![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqssi | Unicode version |
Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
eqssi.1 |
![]() ![]() ![]() ![]() |
eqssi.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqssi |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqssi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqssi.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | eqss 3023 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mpbir2an 884 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-in 2988 df-ss 2995 |
This theorem is referenced by: inv1 3296 unv 3297 undifabs 3336 intab 3685 intid 4007 find 4368 limom 4382 dmv 4599 0ima 4735 rnxpid 4805 dftpos4 5932 djuun 6558 dfuzi 8590 unirnioo 9124 |
Copyright terms: Public domain | W3C validator |