Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstr3d Unicode version

Theorem eqsstr3d 3035
 Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
eqsstr3d.1
eqsstr3d.2
Assertion
Ref Expression
eqsstr3d

Proof of Theorem eqsstr3d
StepHypRef Expression
1 eqsstr3d.1 . . 3
21eqcomd 2087 . 2
3 eqsstr3d.2 . 2
42, 3eqsstrd 3034 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1285   wss 2974 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-in 2980  df-ss 2987 This theorem is referenced by:  ssxpbm  4786  ssxp1  4787  ssxp2  4788  suppssof1  5759  tfrlemiubacc  5979  tfr1onlemubacc  5995  tfrcllemubacc  6008  oaword1  6115  phplem4dom  6397  archnqq  6669
 Copyright terms: Public domain W3C validator