![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr3 | Unicode version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) |
Ref | Expression |
---|---|
eqtr3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2084 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqtr 2099 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylan2b 281 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-4 1441 ax-17 1460 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-cleq 2075 |
This theorem is referenced by: eueq 2764 euind 2780 reuind 2796 preqsn 3575 eusv1 4210 funopg 4964 funinsn 4979 foco 5147 mpt2fun 5634 enq0tr 6686 lteupri 6869 elrealeu 7060 rereceu 7117 receuap 7826 xrltso 8947 xrlttri3 8948 odd2np1 10417 |
Copyright terms: Public domain | W3C validator |