![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr3i | Unicode version |
Description: An equality transitivity inference. (Contributed by NM, 6-May-1994.) |
Ref | Expression |
---|---|
eqtr3i.1 |
![]() ![]() ![]() ![]() |
eqtr3i.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqtr3i |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3i.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2086 |
. 2
![]() ![]() ![]() ![]() |
3 | eqtr3i.2 |
. 2
![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqtri 2102 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-4 1441 ax-17 1460 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-cleq 2075 |
This theorem is referenced by: 3eqtr3i 2110 3eqtr3ri 2111 unundi 3134 unundir 3135 inindi 3190 inindir 3191 difun1 3231 difabs 3235 notab 3241 dfrab2 3246 dif0 3321 difdifdirss 3334 tpidm13 3500 intmin2 3670 univ 4233 iunxpconst 4426 dmres 4660 opabresid 4689 rnresi 4712 cnvcnv 4803 rnresv 4810 cnvsn0 4819 cnvsn 4833 resdmres 4842 coi2 4867 coires1 4868 dfdm2 4882 isarep2 5017 ssimaex 5266 fnreseql 5309 fmptpr 5387 idref 5428 mpt2mpt 5627 caov31 5721 xpexgALT 5791 cnvoprab 5886 frec0g 6046 unfiin 6444 halfnqq 6662 caucvgprlemm 6920 caucvgprprlemmu 6947 caucvgsr 7040 mvlladdi 7393 8th4div3 8317 nneoor 8530 nummac 8602 numadd 8604 numaddc 8605 nummul1c 8606 decbin0 8697 infrenegsupex 8763 iseqvalcbv 9531 m1expcl2 9595 facnn 9751 fac0 9752 4bc3eq4 9797 sizeeq0 9818 resqrexlemcalc1 10038 sqrt1 10070 sqrt4 10071 sqrt9 10072 flodddiv4 10478 2prm 10653 znnen 10709 |
Copyright terms: Public domain | W3C validator |