![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equcomi | Unicode version |
Description: Commutative law for equality. Lemma 7 of [Tarski] p. 69. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equcomi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 1630 |
. 2
![]() ![]() ![]() ![]() | |
2 | ax-8 1436 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpi 15 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-gen 1379 ax-ie2 1424 ax-8 1436 ax-17 1460 ax-i9 1464 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: equcom 1634 equcoms 1635 ax10 1646 cbv2h 1675 equvini 1682 equveli 1683 equsb2 1710 drex1 1720 sbcof2 1732 aev 1734 cbvexdh 1843 rext 3978 iotaval 4908 |
Copyright terms: Public domain | W3C validator |