![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equcoms | Unicode version |
Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equcoms.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
equcoms |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 1633 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | equcoms.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-gen 1379 ax-ie2 1424 ax-8 1436 ax-17 1460 ax-i9 1464 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: equtr 1636 equtr2 1638 equequ2 1640 elequ1 1641 elequ2 1642 ax10o 1644 cbvalh 1677 cbvexh 1679 equvini 1682 stdpc7 1694 sbequ12r 1696 sbequ12a 1697 sbequ 1762 sb6rf 1775 sb9v 1896 sb6a 1906 mo2n 1970 cleqh 2179 cbvab 2202 reu8 2789 sbcco2 2838 snnex 4207 tfisi 4336 opeliunxp 4421 elrnmpt1 4613 rnxpid 4785 iotaval 4908 elabrex 5429 opabex3d 5779 opabex3 5780 enq0ref 6685 setindis 10920 bdsetindis 10922 |
Copyright terms: Public domain | W3C validator |