ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equs5a Unicode version

Theorem equs5a 1631
Description: A property related to substitution that unlike equs5 1657 doesn't require a distinctor antecedent.
Assertion
Ref Expression
equs5a

Proof of Theorem equs5a
StepHypRef Expression
1 hba1 1436 . 2
2 ax-11 1389 . . 3
32imp 114 . 2
41, 3exlimi 1481 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 96  wal 1335  wex 1374
This theorem is referenced by:  equs5e  1632  sb4a  1633  equs45f  1634
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 8  ax-ia1 98  ax-ia2 99  ax-gen 1339  ax-ie2 1376  ax-11 1389  ax-ial 1430
This theorem depends on definitions:  df-bi 109
  Copyright terms: Public domain W3C validator