ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equs5a Unicode version

Theorem equs5a 1561
Description: A property related to substitution that unlike equs5 1596 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
Assertion
Ref Expression
equs5a

Proof of Theorem equs5a
StepHypRef Expression
1 hba1 1365 . 2
2 ax-11 1330 . . 3
32imp 113 . 2
41, 3exlimi 1409 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 95  wal 1266  wex 1313
This theorem is referenced by:  equs5e  1562  sb4a  1568  equs45f  1569
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 97  ax-ia2 98  ax-gen 1269  ax-ie2 1315  ax-11 1330  ax-ial 1359
This theorem depends on definitions:  df-bi 108
  Copyright terms: Public domain W3C validator