ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsb1 Unicode version

Theorem equsb1 1710
Description: Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equsb1  |-  [ y  /  x ] x  =  y

Proof of Theorem equsb1
StepHypRef Expression
1 sb2 1692 . 2  |-  ( A. x ( x  =  y  ->  x  =  y )  ->  [ y  /  x ] x  =  y )
2 id 19 . 2  |-  ( x  =  y  ->  x  =  y )
31, 2mpg 1381 1  |-  [ y  /  x ] x  =  y
Colors of variables: wff set class
Syntax hints:    -> wi 4   [wsb 1687
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441  ax-i9 1464  ax-ial 1468
This theorem depends on definitions:  df-bi 115  df-sb 1688
This theorem is referenced by:  sbcocom  1887  elsb3  1895  elsb4  1896  pm13.183  2740  exss  4010  relelfvdm  5257
  Copyright terms: Public domain W3C validator