ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsb3lem Structured version   Unicode version

Theorem equsb3lem 1741
Description: Lemma for equsb3 1742. (Contributed by NM, 4-Dec-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
equsb3lem
Distinct variable groups:   ,   ,

Proof of Theorem equsb3lem
StepHypRef Expression
1 ax-17 1357 . 2
2 equequ1 1520 . 2
31, 2sbieh 1594 1
Colors of variables: wff set class
Syntax hints:   wb 96   wceq 1330  wsb 1567
This theorem is referenced by:  equsb3  1742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 97  ax-ia2 98  ax-ia3 99  ax-5 1273  ax-gen 1275  ax-ie1 1320  ax-ie2 1321  ax-8 1334  ax-4 1339  ax-17 1357  ax-i9 1361  ax-ial 1366
This theorem depends on definitions:  df-bi 108  df-sb 1568
  Copyright terms: Public domain W3C validator