ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsb3lem Unicode version

Theorem equsb3lem 1771
Description: Lemma for equsb3 1772. (The proof was shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
equsb3lem
Distinct variable groups:   ,   ,

Proof of Theorem equsb3lem
StepHypRef Expression
1 ax-17 1402 . 2
2 equequ1 1570 . 2
31, 2sbie 1630 1
Colors of variables: wff set class
Syntax hints:   wb 97   wceq 1383
This theorem is referenced by:  equsb3  1772
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 8  ax-ia1 98  ax-ia2 99  ax-ia3 100  ax-5 1336  ax-gen 1339  ax-ie1 1375  ax-ie2 1376  ax-8 1387  ax-4 1392  ax-17 1402  ax-i9 1417  ax-ial 1430
This theorem depends on definitions:  df-bi 109  df-sb 1606
  Copyright terms: Public domain W3C validator