ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equvini Unicode version

Theorem equvini 1657
Description: A variable introduction law for equality. Lemma 15 of [Monk2] p. 109, however we do not require  z to be distinct from  x and  y (making the proof longer). (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
equvini  |-  ( x  =  y  ->  E. z
( x  =  z  /\  z  =  y ) )

Proof of Theorem equvini
StepHypRef Expression
1 ax12or 1419 . 2  |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
) )
2 equcomi 1608 . . . . . . 7  |-  ( z  =  x  ->  x  =  z )
32alimi 1360 . . . . . 6  |-  ( A. z  z  =  x  ->  A. z  x  =  z )
4 a9e 1602 . . . . . 6  |-  E. z 
z  =  y
53, 4jctir 300 . . . . 5  |-  ( A. z  z  =  x  ->  ( A. z  x  =  z  /\  E. z  z  =  y
) )
65a1d 22 . . . 4  |-  ( A. z  z  =  x  ->  ( x  =  y  ->  ( A. z  x  =  z  /\  E. z  z  =  y ) ) )
7 19.29 1527 . . . 4  |-  ( ( A. z  x  =  z  /\  E. z 
z  =  y )  ->  E. z ( x  =  z  /\  z  =  y ) )
86, 7syl6 33 . . 3  |-  ( A. z  z  =  x  ->  ( x  =  y  ->  E. z ( x  =  z  /\  z  =  y ) ) )
9 a9e 1602 . . . . . . . 8  |-  E. z 
z  =  x
102eximi 1507 . . . . . . . 8  |-  ( E. z  z  =  x  ->  E. z  x  =  z )
119, 10ax-mp 7 . . . . . . 7  |-  E. z  x  =  z
12112a1i 27 . . . . . 6  |-  ( A. z  z  =  y  ->  ( x  =  y  ->  E. z  x  =  z ) )
1312anc2ri 317 . . . . 5  |-  ( A. z  z  =  y  ->  ( x  =  y  ->  ( E. z  x  =  z  /\  A. z  z  =  y ) ) )
14 19.29r 1528 . . . . 5  |-  ( ( E. z  x  =  z  /\  A. z 
z  =  y )  ->  E. z ( x  =  z  /\  z  =  y ) )
1513, 14syl6 33 . . . 4  |-  ( A. z  z  =  y  ->  ( x  =  y  ->  E. z ( x  =  z  /\  z  =  y ) ) )
16 ax-8 1411 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
x  =  y  -> 
z  =  y ) )
1716anc2li 316 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
x  =  y  -> 
( x  =  z  /\  z  =  y ) ) )
1817equcoms 1610 . . . . . . . . . 10  |-  ( z  =  x  ->  (
x  =  y  -> 
( x  =  z  /\  z  =  y ) ) )
1918com12 30 . . . . . . . . 9  |-  ( x  =  y  ->  (
z  =  x  -> 
( x  =  z  /\  z  =  y ) ) )
2019alimi 1360 . . . . . . . 8  |-  ( A. z  x  =  y  ->  A. z ( z  =  x  ->  (
x  =  z  /\  z  =  y )
) )
21 exim 1506 . . . . . . . 8  |-  ( A. z ( z  =  x  ->  ( x  =  z  /\  z  =  y ) )  ->  ( E. z 
z  =  x  ->  E. z ( x  =  z  /\  z  =  y ) ) )
2220, 21syl 14 . . . . . . 7  |-  ( A. z  x  =  y  ->  ( E. z  z  =  x  ->  E. z
( x  =  z  /\  z  =  y ) ) )
239, 22mpi 15 . . . . . 6  |-  ( A. z  x  =  y  ->  E. z ( x  =  z  /\  z  =  y ) )
2423imim2i 12 . . . . 5  |-  ( ( x  =  y  ->  A. z  x  =  y )  ->  (
x  =  y  ->  E. z ( x  =  z  /\  z  =  y ) ) )
2524sps 1446 . . . 4  |-  ( A. z ( x  =  y  ->  A. z  x  =  y )  ->  ( x  =  y  ->  E. z ( x  =  z  /\  z  =  y ) ) )
2615, 25jaoi 646 . . 3  |-  ( ( A. z  z  =  y  \/  A. z
( x  =  y  ->  A. z  x  =  y ) )  -> 
( x  =  y  ->  E. z ( x  =  z  /\  z  =  y ) ) )
278, 26jaoi 646 . 2  |-  ( ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
) )  ->  (
x  =  y  ->  E. z ( x  =  z  /\  z  =  y ) ) )
281, 27ax-mp 7 1  |-  ( x  =  y  ->  E. z
( x  =  z  /\  z  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    \/ wo 639   A.wal 1257    = wceq 1259   E.wex 1397
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-i12 1414  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443
This theorem depends on definitions:  df-bi 114
This theorem is referenced by:  sbequi  1736  equvin  1759
  Copyright terms: Public domain W3C validator