ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euabsn Unicode version

Theorem euabsn 3470
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.)
Assertion
Ref Expression
euabsn  |-  ( E! x ph  <->  E. x { x  |  ph }  =  { x } )

Proof of Theorem euabsn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 euabsn2 3469 . 2  |-  ( E! x ph  <->  E. y { x  |  ph }  =  { y } )
2 nfv 1462 . . 3  |-  F/ y { x  |  ph }  =  { x }
3 nfab1 2222 . . . 4  |-  F/_ x { x  |  ph }
43nfeq1 2229 . . 3  |-  F/ x { x  |  ph }  =  { y }
5 sneq 3417 . . . 4  |-  ( x  =  y  ->  { x }  =  { y } )
65eqeq2d 2093 . . 3  |-  ( x  =  y  ->  ( { x  |  ph }  =  { x }  <->  { x  |  ph }  =  {
y } ) )
72, 4, 6cbvex 1680 . 2  |-  ( E. x { x  | 
ph }  =  {
x }  <->  E. y { x  |  ph }  =  { y } )
81, 7bitr4i 185 1  |-  ( E! x ph  <->  E. x { x  |  ph }  =  { x } )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    = wceq 1285   E.wex 1422   E!weu 1942   {cab 2068   {csn 3406
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-sn 3412
This theorem is referenced by:  eusn  3474  args  4724
  Copyright terms: Public domain W3C validator