ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eueq Unicode version

Theorem eueq 2773
Description: Equality has existential uniqueness. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
eueq  |-  ( A  e.  _V  <->  E! x  x  =  A )
Distinct variable group:    x, A

Proof of Theorem eueq
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqtr3 2102 . . . 4  |-  ( ( x  =  A  /\  y  =  A )  ->  x  =  y )
21gen2 1380 . . 3  |-  A. x A. y ( ( x  =  A  /\  y  =  A )  ->  x  =  y )
32biantru 296 . 2  |-  ( E. x  x  =  A  <-> 
( E. x  x  =  A  /\  A. x A. y ( ( x  =  A  /\  y  =  A )  ->  x  =  y ) ) )
4 isset 2614 . 2  |-  ( A  e.  _V  <->  E. x  x  =  A )
5 eqeq1 2089 . . 3  |-  ( x  =  y  ->  (
x  =  A  <->  y  =  A ) )
65eu4 2005 . 2  |-  ( E! x  x  =  A  <-> 
( E. x  x  =  A  /\  A. x A. y ( ( x  =  A  /\  y  =  A )  ->  x  =  y ) ) )
73, 4, 63bitr4i 210 1  |-  ( A  e.  _V  <->  E! x  x  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1283    = wceq 1285   E.wex 1422    e. wcel 1434   E!weu 1943   _Vcvv 2610
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-v 2612
This theorem is referenced by:  eueq1  2774  moeq  2777  mosubt  2779  reuhypd  4250  mptfng  5076
  Copyright terms: Public domain W3C validator