ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusvobj1 Unicode version

Theorem eusvobj1 5530
Description: Specify the same object in two ways when class  B ( y ) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Hypothesis
Ref Expression
eusvobj1.1  |-  B  e. 
_V
Assertion
Ref Expression
eusvobj1  |-  ( E! x E. y  e.  A  x  =  B  ->  ( iota x E. y  e.  A  x  =  B )  =  ( iota x A. y  e.  A  x  =  B )
)
Distinct variable groups:    x, y, A   
x, B
Allowed substitution hint:    B( y)

Proof of Theorem eusvobj1
StepHypRef Expression
1 nfeu1 1953 . . 3  |-  F/ x E! x E. y  e.  A  x  =  B
2 eusvobj1.1 . . . 4  |-  B  e. 
_V
32eusvobj2 5529 . . 3  |-  ( E! x E. y  e.  A  x  =  B  ->  ( E. y  e.  A  x  =  B 
<-> 
A. y  e.  A  x  =  B )
)
41, 3alrimi 1456 . 2  |-  ( E! x E. y  e.  A  x  =  B  ->  A. x ( E. y  e.  A  x  =  B  <->  A. y  e.  A  x  =  B ) )
5 iotabi 4906 . 2  |-  ( A. x ( E. y  e.  A  x  =  B 
<-> 
A. y  e.  A  x  =  B )  ->  ( iota x E. y  e.  A  x  =  B )  =  ( iota x A. y  e.  A  x  =  B ) )
64, 5syl 14 1  |-  ( E! x E. y  e.  A  x  =  B  ->  ( iota x E. y  e.  A  x  =  B )  =  ( iota x A. y  e.  A  x  =  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1283    = wceq 1285    e. wcel 1434   E!weu 1942   A.wral 2349   E.wrex 2350   _Vcvv 2602   iotacio 4895
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-sbc 2817  df-csb 2910  df-sn 3412  df-uni 3610  df-iota 4897
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator