ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusvobj2 Unicode version

Theorem eusvobj2 5760
Description: Specify the same property in two ways when class  B ( y ) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
eusvobj1.1  |-  B  e. 
_V
Assertion
Ref Expression
eusvobj2  |-  ( E! x E. y  e.  A  x  =  B  ->  ( E. y  e.  A  x  =  B 
<-> 
A. y  e.  A  x  =  B )
)
Distinct variable groups:    x, y, A   
x, B
Allowed substitution hint:    B( y)

Proof of Theorem eusvobj2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 euabsn2 3592 . . 3  |-  ( E! x E. y  e.  A  x  =  B  <->  E. z { x  |  E. y  e.  A  x  =  B }  =  { z } )
2 eleq2 2203 . . . . . 6  |-  ( { x  |  E. y  e.  A  x  =  B }  =  {
z }  ->  (
x  e.  { x  |  E. y  e.  A  x  =  B }  <->  x  e.  { z } ) )
3 abid 2127 . . . . . 6  |-  ( x  e.  { x  |  E. y  e.  A  x  =  B }  <->  E. y  e.  A  x  =  B )
4 velsn 3544 . . . . . 6  |-  ( x  e.  { z }  <-> 
x  =  z )
52, 3, 43bitr3g 221 . . . . 5  |-  ( { x  |  E. y  e.  A  x  =  B }  =  {
z }  ->  ( E. y  e.  A  x  =  B  <->  x  =  z ) )
6 nfre1 2476 . . . . . . . . 9  |-  F/ y E. y  e.  A  x  =  B
76nfab 2286 . . . . . . . 8  |-  F/_ y { x  |  E. y  e.  A  x  =  B }
87nfeq1 2291 . . . . . . 7  |-  F/ y { x  |  E. y  e.  A  x  =  B }  =  {
z }
9 eusvobj1.1 . . . . . . . . 9  |-  B  e. 
_V
109elabrex 5659 . . . . . . . 8  |-  ( y  e.  A  ->  B  e.  { x  |  E. y  e.  A  x  =  B } )
11 eleq2 2203 . . . . . . . . 9  |-  ( { x  |  E. y  e.  A  x  =  B }  =  {
z }  ->  ( B  e.  { x  |  E. y  e.  A  x  =  B }  <->  B  e.  { z } ) )
129elsn 3543 . . . . . . . . . 10  |-  ( B  e.  { z }  <-> 
B  =  z )
13 eqcom 2141 . . . . . . . . . 10  |-  ( B  =  z  <->  z  =  B )
1412, 13bitri 183 . . . . . . . . 9  |-  ( B  e.  { z }  <-> 
z  =  B )
1511, 14syl6bb 195 . . . . . . . 8  |-  ( { x  |  E. y  e.  A  x  =  B }  =  {
z }  ->  ( B  e.  { x  |  E. y  e.  A  x  =  B }  <->  z  =  B ) )
1610, 15syl5ib 153 . . . . . . 7  |-  ( { x  |  E. y  e.  A  x  =  B }  =  {
z }  ->  (
y  e.  A  -> 
z  =  B ) )
178, 16ralrimi 2503 . . . . . 6  |-  ( { x  |  E. y  e.  A  x  =  B }  =  {
z }  ->  A. y  e.  A  z  =  B )
18 eqeq1 2146 . . . . . . 7  |-  ( x  =  z  ->  (
x  =  B  <->  z  =  B ) )
1918ralbidv 2437 . . . . . 6  |-  ( x  =  z  ->  ( A. y  e.  A  x  =  B  <->  A. y  e.  A  z  =  B ) )
2017, 19syl5ibrcom 156 . . . . 5  |-  ( { x  |  E. y  e.  A  x  =  B }  =  {
z }  ->  (
x  =  z  ->  A. y  e.  A  x  =  B )
)
215, 20sylbid 149 . . . 4  |-  ( { x  |  E. y  e.  A  x  =  B }  =  {
z }  ->  ( E. y  e.  A  x  =  B  ->  A. y  e.  A  x  =  B ) )
2221exlimiv 1577 . . 3  |-  ( E. z { x  |  E. y  e.  A  x  =  B }  =  { z }  ->  ( E. y  e.  A  x  =  B  ->  A. y  e.  A  x  =  B ) )
231, 22sylbi 120 . 2  |-  ( E! x E. y  e.  A  x  =  B  ->  ( E. y  e.  A  x  =  B  ->  A. y  e.  A  x  =  B )
)
24 euex 2029 . . 3  |-  ( E! x E. y  e.  A  x  =  B  ->  E. x E. y  e.  A  x  =  B )
25 rexm 3462 . . . 4  |-  ( E. y  e.  A  x  =  B  ->  E. y 
y  e.  A )
2625exlimiv 1577 . . 3  |-  ( E. x E. y  e.  A  x  =  B  ->  E. y  y  e.  A )
27 r19.2m 3449 . . . 4  |-  ( ( E. y  y  e.  A  /\  A. y  e.  A  x  =  B )  ->  E. y  e.  A  x  =  B )
2827ex 114 . . 3  |-  ( E. y  y  e.  A  ->  ( A. y  e.  A  x  =  B  ->  E. y  e.  A  x  =  B )
)
2924, 26, 283syl 17 . 2  |-  ( E! x E. y  e.  A  x  =  B  ->  ( A. y  e.  A  x  =  B  ->  E. y  e.  A  x  =  B )
)
3023, 29impbid 128 1  |-  ( E! x E. y  e.  A  x  =  B  ->  ( E. y  e.  A  x  =  B 
<-> 
A. y  e.  A  x  =  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480   E!weu 1999   {cab 2125   A.wral 2416   E.wrex 2417   _Vcvv 2686   {csn 3527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-csb 3004  df-sn 3533
This theorem is referenced by:  eusvobj1  5761
  Copyright terms: Public domain W3C validator