ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exan Unicode version

Theorem exan 1624
Description: Place a conjunct in the scope of an existential quantifier. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
exan.1  |-  ( E. x ph  /\  ps )
Assertion
Ref Expression
exan  |-  E. x
( ph  /\  ps )

Proof of Theorem exan
StepHypRef Expression
1 hbe1 1425 . . . 4  |-  ( E. x ph  ->  A. x E. x ph )
2119.28h 1495 . . 3  |-  ( A. x ( E. x ph  /\  ps )  <->  ( E. x ph  /\  A. x ps ) )
3 exan.1 . . 3  |-  ( E. x ph  /\  ps )
42, 3mpgbi 1382 . 2  |-  ( E. x ph  /\  A. x ps )
5 19.29r 1553 . 2  |-  ( ( E. x ph  /\  A. x ps )  ->  E. x ( ph  /\  ps ) )
64, 5ax-mp 7 1  |-  E. x
( ph  /\  ps )
Colors of variables: wff set class
Syntax hints:    /\ wa 102   A.wal 1283   E.wex 1422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441  ax-ial 1468
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  bm1.3ii  3919  bdbm1.3ii  10949
  Copyright terms: Public domain W3C validator