ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnzlemstep Unicode version

Theorem exbtwnzlemstep 9993
Description: Lemma for exbtwnzlemex 9995. Induction step. (Contributed by Jim Kingdon, 10-May-2022.)
Hypotheses
Ref Expression
exbtwnzlemstep.k  |-  ( ph  ->  K  e.  NN )
exbtwnzlemstep.a  |-  ( ph  ->  A  e.  RR )
exbtwnzlemstep.tri  |-  ( (
ph  /\  n  e.  ZZ )  ->  ( n  <_  A  \/  A  <  n ) )
Assertion
Ref Expression
exbtwnzlemstep  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( K  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  K ) ) )
Distinct variable groups:    A, m, n   
m, K, n    ph, m, n

Proof of Theorem exbtwnzlemstep
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 simpllr 508 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  m  e.  ZZ )
2 exbtwnzlemstep.k . . . . . . . . . 10  |-  ( ph  ->  K  e.  NN )
32ad3antrrr 483 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  K  e.  NN )
43nnzd 9140 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  K  e.  ZZ )
51, 4zaddcld 9145 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
m  +  K )  e.  ZZ )
6 simpr 109 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
m  +  K )  <_  A )
7 exbtwnzlemstep.a . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
87ad3antrrr 483 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  A  e.  RR )
95zred 9141 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
m  +  K )  e.  RR )
10 1red 7749 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  1  e.  RR )
119, 10readdcld 7763 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
( m  +  K
)  +  1 )  e.  RR )
123nnred 8701 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  K  e.  RR )
139, 12readdcld 7763 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
( m  +  K
)  +  K )  e.  RR )
14 simplrr 510 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  A  <  ( m  +  ( K  +  1 ) ) )
151zcnd 9142 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  m  e.  CC )
163nncnd 8702 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  K  e.  CC )
17 1cnd 7750 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  1  e.  CC )
1815, 16, 17addassd 7756 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
( m  +  K
)  +  1 )  =  ( m  +  ( K  +  1
) ) )
1914, 18breqtrrd 3926 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  A  <  ( ( m  +  K )  +  1 ) )
203nnge1d 8731 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  1  <_  K )
2110, 12, 9, 20leadd2dd 8290 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  (
( m  +  K
)  +  1 )  <_  ( ( m  +  K )  +  K ) )
228, 11, 13, 19, 21ltletrd 8153 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  A  <  ( ( m  +  K )  +  K
) )
23 breq1 3902 . . . . . . . . 9  |-  ( j  =  ( m  +  K )  ->  (
j  <_  A  <->  ( m  +  K )  <_  A
) )
24 oveq1 5749 . . . . . . . . . 10  |-  ( j  =  ( m  +  K )  ->  (
j  +  K )  =  ( ( m  +  K )  +  K ) )
2524breq2d 3911 . . . . . . . . 9  |-  ( j  =  ( m  +  K )  ->  ( A  <  ( j  +  K )  <->  A  <  ( ( m  +  K
)  +  K ) ) )
2623, 25anbi12d 464 . . . . . . . 8  |-  ( j  =  ( m  +  K )  ->  (
( j  <_  A  /\  A  <  ( j  +  K ) )  <-> 
( ( m  +  K )  <_  A  /\  A  <  ( ( m  +  K )  +  K ) ) ) )
2726rspcev 2763 . . . . . . 7  |-  ( ( ( m  +  K
)  e.  ZZ  /\  ( ( m  +  K )  <_  A  /\  A  <  ( ( m  +  K )  +  K ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
285, 6, 22, 27syl12anc 1199 . . . . . 6  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  ( m  +  K )  <_  A )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
29 simpllr 508 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  A  < 
( m  +  K
) )  ->  m  e.  ZZ )
30 simplrl 509 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  A  < 
( m  +  K
) )  ->  m  <_  A )
31 simpr 109 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  A  < 
( m  +  K
) )  ->  A  <  ( m  +  K
) )
32 breq1 3902 . . . . . . . . 9  |-  ( j  =  m  ->  (
j  <_  A  <->  m  <_  A ) )
33 oveq1 5749 . . . . . . . . . 10  |-  ( j  =  m  ->  (
j  +  K )  =  ( m  +  K ) )
3433breq2d 3911 . . . . . . . . 9  |-  ( j  =  m  ->  ( A  <  ( j  +  K )  <->  A  <  ( m  +  K ) ) )
3532, 34anbi12d 464 . . . . . . . 8  |-  ( j  =  m  ->  (
( j  <_  A  /\  A  <  ( j  +  K ) )  <-> 
( m  <_  A  /\  A  <  ( m  +  K ) ) ) )
3635rspcev 2763 . . . . . . 7  |-  ( ( m  e.  ZZ  /\  ( m  <_  A  /\  A  <  ( m  +  K ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  ( j  +  K ) ) )
3729, 30, 31, 36syl12anc 1199 . . . . . 6  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( m  <_  A  /\  A  <  ( m  +  ( K  + 
1 ) ) ) )  /\  A  < 
( m  +  K
) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
38 breq1 3902 . . . . . . . 8  |-  ( n  =  ( m  +  K )  ->  (
n  <_  A  <->  ( m  +  K )  <_  A
) )
39 breq2 3903 . . . . . . . 8  |-  ( n  =  ( m  +  K )  ->  ( A  <  n  <->  A  <  ( m  +  K ) ) )
4038, 39orbi12d 767 . . . . . . 7  |-  ( n  =  ( m  +  K )  ->  (
( n  <_  A  \/  A  <  n )  <-> 
( ( m  +  K )  <_  A  \/  A  <  ( m  +  K ) ) ) )
41 exbtwnzlemstep.tri . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ZZ )  ->  ( n  <_  A  \/  A  <  n ) )
4241ralrimiva 2482 . . . . . . . 8  |-  ( ph  ->  A. n  e.  ZZ  ( n  <_  A  \/  A  <  n ) )
4342ad2antrr 479 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  A. n  e.  ZZ  ( n  <_  A  \/  A  <  n ) )
44 simplr 504 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  m  e.  ZZ )
452ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  K  e.  NN )
4645nnzd 9140 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  K  e.  ZZ )
4744, 46zaddcld 9145 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  ( m  +  K )  e.  ZZ )
4840, 43, 47rspcdva 2768 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  ( ( m  +  K )  <_  A  \/  A  <  ( m  +  K ) ) )
4928, 37, 48mpjaodan 772 . . . . 5  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  (
m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  ( j  +  K ) ) )
5049ex 114 . . . 4  |-  ( (
ph  /\  m  e.  ZZ )  ->  ( ( m  <_  A  /\  A  <  ( m  +  ( K  +  1
) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  ( j  +  K ) ) ) )
5150rexlimdva 2526 . . 3  |-  ( ph  ->  ( E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( K  +  1 ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) ) )
5251imp 123 . 2  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( K  +  1 ) ) ) )  ->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
53 breq1 3902 . . . 4  |-  ( m  =  j  ->  (
m  <_  A  <->  j  <_  A ) )
54 oveq1 5749 . . . . 5  |-  ( m  =  j  ->  (
m  +  K )  =  ( j  +  K ) )
5554breq2d 3911 . . . 4  |-  ( m  =  j  ->  ( A  <  ( m  +  K )  <->  A  <  ( j  +  K ) ) )
5653, 55anbi12d 464 . . 3  |-  ( m  =  j  ->  (
( m  <_  A  /\  A  <  ( m  +  K ) )  <-> 
( j  <_  A  /\  A  <  ( j  +  K ) ) ) )
5756cbvrexv 2632 . 2  |-  ( E. m  e.  ZZ  (
m  <_  A  /\  A  <  ( m  +  K ) )  <->  E. j  e.  ZZ  ( j  <_  A  /\  A  <  (
j  +  K ) ) )
5852, 57sylibr 133 1  |-  ( (
ph  /\  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  ( K  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  <_  A  /\  A  <  (
m  +  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 682    = wceq 1316    e. wcel 1465   A.wral 2393   E.wrex 2394   class class class wbr 3899  (class class class)co 5742   RRcr 7587   1c1 7589    + caddc 7591    < clt 7768    <_ cle 7769   NNcn 8688   ZZcz 9022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-n0 8946  df-z 9023
This theorem is referenced by:  exbtwnzlemshrink  9994
  Copyright terms: Public domain W3C validator