Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  excxor Unicode version

Theorem excxor 1285
 Description: This tautology shows that xor is really exclusive. (Contributed by FL, 22-Nov-2010.) (Proof rewritten by Jim Kingdon, 5-May-2018.)
Assertion
Ref Expression
excxor

Proof of Theorem excxor
StepHypRef Expression
1 xoranor 1284 . . 3
2 andi 742 . . 3
3 orcom 657 . . . . 5
4 pm3.24 637 . . . . . 6
54biorfi 675 . . . . 5
6 andir 743 . . . . 5
73, 5, 63bitr4ri 206 . . . 4
8 pm5.61 718 . . . 4
97, 8orbi12i 691 . . 3
101, 2, 93bitri 199 . 2
11 orcom 657 . 2
12 ancom 257 . . 3
1312orbi2i 689 . 2
1410, 11, 133bitri 199 1
 Colors of variables: wff set class Syntax hints:   wn 3   wa 101   wb 102   wo 639   wxo 1282 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640 This theorem depends on definitions:  df-bi 114  df-xor 1283 This theorem is referenced by:  xordc  1299  symdifxor  3231
 Copyright terms: Public domain W3C validator