ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimdvv Unicode version

Theorem exlimdvv 1820
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)
Hypothesis
Ref Expression
exlimdvv.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
exlimdvv  |-  ( ph  ->  ( E. x E. y ps  ->  ch )
)
Distinct variable groups:    ch, x    ph, x    ch, y    ph, y
Allowed substitution hints:    ps( x, y)

Proof of Theorem exlimdvv
StepHypRef Expression
1 exlimdvv.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21exlimdv 1742 . 2  |-  ( ph  ->  ( E. y ps 
->  ch ) )
32exlimdv 1742 1  |-  ( ph  ->  ( E. x E. y ps  ->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-5 1377  ax-gen 1379  ax-ie2 1424  ax-17 1460
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  euotd  4037  funopg  4984  th3qlem1  6295  fundmen  6374  addnq0mo  6751  mulnq0mo  6752  genprndl  6825  genprndu  6826  genpdisj  6827  mullocpr  6875  addsrmo  7034  mulsrmo  7035
  Copyright terms: Public domain W3C validator