ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmoeu2 Unicode version

Theorem exmoeu2 1991
Description: Existence implies "at most one" is equivalent to uniqueness. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
exmoeu2  |-  ( E. x ph  ->  ( E* x ph  <->  E! x ph ) )

Proof of Theorem exmoeu2
StepHypRef Expression
1 eu5 1990 . 2  |-  ( E! x ph  <->  ( E. x ph  /\  E* x ph ) )
21baibr 863 1  |-  ( E. x ph  ->  ( E* x ph  <->  E! x ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   E.wex 1422   E!weu 1943   E*wmo 1944
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947
This theorem is referenced by:  n0mmoeu  3281  fneu  5055
  Copyright terms: Public domain W3C validator