ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expp1 Unicode version

Theorem expp1 10300
Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.)
Assertion
Ref Expression
expp1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )

Proof of Theorem expp1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 8979 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 simpr 109 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  NN )
3 elnnuz 9362 . . . . . . 7  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
42, 3sylib 121 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  ( ZZ>= ` 
1 ) )
5 simpll 518 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN )  /\  x  e.  (
ZZ>= `  1 ) )  ->  A  e.  CC )
6 elnnuz 9362 . . . . . . . . 9  |-  ( x  e.  NN  <->  x  e.  ( ZZ>= `  1 )
)
7 fvconst2g 5634 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  NN )  ->  ( ( NN  X.  { A } ) `  x )  =  A )
87eleq1d 2208 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  x  e.  NN )  ->  ( ( ( NN 
X.  { A }
) `  x )  e.  CC  <->  A  e.  CC ) )
96, 8sylan2br 286 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  ( ZZ>= ` 
1 ) )  -> 
( ( ( NN 
X.  { A }
) `  x )  e.  CC  <->  A  e.  CC ) )
109adantlr 468 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN )  /\  x  e.  (
ZZ>= `  1 ) )  ->  ( ( ( NN  X.  { A } ) `  x
)  e.  CC  <->  A  e.  CC ) )
115, 10mpbird 166 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN )  /\  x  e.  (
ZZ>= `  1 ) )  ->  ( ( NN 
X.  { A }
) `  x )  e.  CC )
12 mulcl 7747 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
1312adantl 275 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN )  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
144, 11, 13seq3p1 10235 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  ( N  +  1 ) )  =  ( (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N )  x.  ( ( NN  X.  { A } ) `  ( N  +  1
) ) ) )
15 peano2nn 8732 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
16 fvconst2g 5634 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  ( ( NN 
X.  { A }
) `  ( N  +  1 ) )  =  A )
1715, 16sylan2 284 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( ( NN  X.  { A } ) `  ( N  +  1
) )  =  A )
1817oveq2d 5790 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N )  x.  (
( NN  X.  { A } ) `  ( N  +  1 ) ) )  =  ( (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  N
)  x.  A ) )
1914, 18eqtrd 2172 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  ( N  +  1 ) )  =  ( (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N )  x.  A ) )
20 expnnval 10296 . . . . 5  |-  ( ( A  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  ( A ^
( N  +  1 ) )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 ( N  + 
1 ) ) )
2115, 20sylan2 284 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ ( N  +  1 ) )  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  ( N  +  1
) ) )
22 expnnval 10296 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
2322oveq1d 5789 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( ( A ^ N )  x.  A
)  =  ( (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N )  x.  A ) )
2419, 21, 233eqtr4d 2182 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )
25 exp1 10299 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  A )
26 mulid2 7764 . . . . . 6  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
2725, 26eqtr4d 2175 . . . . 5  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  ( 1  x.  A
) )
2827adantr 274 . . . 4  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^
1 )  =  ( 1  x.  A ) )
29 simpr 109 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  N  =  0 )
3029oveq1d 5789 . . . . . 6  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( N  + 
1 )  =  ( 0  +  1 ) )
31 0p1e1 8834 . . . . . 6  |-  ( 0  +  1 )  =  1
3230, 31syl6eq 2188 . . . . 5  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( N  + 
1 )  =  1 )
3332oveq2d 5790 . . . 4  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^
( N  +  1 ) )  =  ( A ^ 1 ) )
34 oveq2 5782 . . . . . 6  |-  ( N  =  0  ->  ( A ^ N )  =  ( A ^ 0 ) )
35 exp0 10297 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
3634, 35sylan9eqr 2194 . . . . 5  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^ N )  =  1 )
3736oveq1d 5789 . . . 4  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( ( A ^ N )  x.  A )  =  ( 1  x.  A ) )
3828, 33, 373eqtr4d 2182 . . 3  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^
( N  +  1 ) )  =  ( ( A ^ N
)  x.  A ) )
3924, 38jaodan 786 . 2  |-  ( ( A  e.  CC  /\  ( N  e.  NN  \/  N  =  0
) )  ->  ( A ^ ( N  + 
1 ) )  =  ( ( A ^ N )  x.  A
) )
401, 39sylan2b 285 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480   {csn 3527    X. cxp 4537   ` cfv 5123  (class class class)co 5774   CCcc 7618   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625   NNcn 8720   NN0cn0 8977   ZZ>=cuz 9326    seqcseq 10218   ^cexp 10292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-seqfrec 10219  df-exp 10293
This theorem is referenced by:  expcllem  10304  expm1t  10321  expap0  10323  mulexp  10332  expadd  10335  expmul  10338  leexp2r  10347  leexp1a  10348  sqval  10351  cu2  10391  i3  10394  binom3  10409  bernneq  10412  expp1d  10425  faclbnd  10487  faclbnd2  10488  faclbnd6  10490  cjexp  10665  absexp  10851  binomlem  11252  geolim  11280  geo2sum  11283  efexp  11388  demoivreALT  11480  prmdvdsexp  11826  oddpwdclemodd  11850  expcncf  12761  dvexp  12844  tangtx  12919
  Copyright terms: Public domain W3C validator