ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exse Unicode version

Theorem exse 4119
Description: Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
exse  |-  ( A  e.  V  ->  R Se  A )

Proof of Theorem exse
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabexg 3941 . . 3  |-  ( A  e.  V  ->  { y  e.  A  |  y R x }  e.  _V )
21ralrimivw 2440 . 2  |-  ( A  e.  V  ->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
3 df-se 4116 . 2  |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
42, 3sylibr 132 1  |-  ( A  e.  V  ->  R Se  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1434   A.wral 2353   {crab 2357   _Vcvv 2610   class class class wbr 3805   Se wse 4112
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rab 2362  df-v 2612  df-in 2988  df-ss 2995  df-se 4116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator