ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0 Unicode version

Theorem f0 5111
Description: The empty function. (Contributed by NM, 14-Aug-1999.)
Assertion
Ref Expression
f0  |-  (/) : (/) --> A

Proof of Theorem f0
StepHypRef Expression
1 eqid 2082 . . 3  |-  (/)  =  (/)
2 fn0 5049 . . 3  |-  ( (/)  Fn  (/) 
<->  (/)  =  (/) )
31, 2mpbir 144 . 2  |-  (/)  Fn  (/)
4 rn0 4616 . . 3  |-  ran  (/)  =  (/)
5 0ss 3289 . . 3  |-  (/)  C_  A
64, 5eqsstri 3030 . 2  |-  ran  (/)  C_  A
7 df-f 4936 . 2  |-  ( (/) :
(/) --> A  <->  ( (/)  Fn  (/)  /\  ran  (/)  C_  A ) )
83, 6, 7mpbir2an 884 1  |-  (/) : (/) --> A
Colors of variables: wff set class
Syntax hints:    = wceq 1285    C_ wss 2974   (/)c0 3258   ran crn 4372    Fn wfn 4927   -->wf 4928
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-fun 4934  df-fn 4935  df-f 4936
This theorem is referenced by:  f00  5112  f10  5191  ac6sfi  6431
  Copyright terms: Public domain W3C validator