ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1co Unicode version

Theorem f1co 5129
Description: Composition of one-to-one functions. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.)
Assertion
Ref Expression
f1co  |-  ( ( F : B -1-1-> C  /\  G : A -1-1-> B
)  ->  ( F  o.  G ) : A -1-1-> C )

Proof of Theorem f1co
StepHypRef Expression
1 df-f1 4935 . . 3  |-  ( F : B -1-1-> C  <->  ( F : B --> C  /\  Fun  `' F ) )
2 df-f1 4935 . . 3  |-  ( G : A -1-1-> B  <->  ( G : A --> B  /\  Fun  `' G ) )
3 fco 5084 . . . . 5  |-  ( ( F : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )
4 funco 4968 . . . . . . 7  |-  ( ( Fun  `' G  /\  Fun  `' F )  ->  Fun  ( `' G  o.  `' F ) )
5 cnvco 4548 . . . . . . . 8  |-  `' ( F  o.  G )  =  ( `' G  o.  `' F )
65funeqi 4950 . . . . . . 7  |-  ( Fun  `' ( F  o.  G )  <->  Fun  ( `' G  o.  `' F
) )
74, 6sylibr 141 . . . . . 6  |-  ( ( Fun  `' G  /\  Fun  `' F )  ->  Fun  `' ( F  o.  G
) )
87ancoms 259 . . . . 5  |-  ( ( Fun  `' F  /\  Fun  `' G )  ->  Fun  `' ( F  o.  G
) )
93, 8anim12i 325 . . . 4  |-  ( ( ( F : B --> C  /\  G : A --> B )  /\  ( Fun  `' F  /\  Fun  `' G ) )  -> 
( ( F  o.  G ) : A --> C  /\  Fun  `' ( F  o.  G ) ) )
109an4s 530 . . 3  |-  ( ( ( F : B --> C  /\  Fun  `' F
)  /\  ( G : A --> B  /\  Fun  `' G ) )  -> 
( ( F  o.  G ) : A --> C  /\  Fun  `' ( F  o.  G ) ) )
111, 2, 10syl2anb 279 . 2  |-  ( ( F : B -1-1-> C  /\  G : A -1-1-> B
)  ->  ( ( F  o.  G ) : A --> C  /\  Fun  `' ( F  o.  G
) ) )
12 df-f1 4935 . 2  |-  ( ( F  o.  G ) : A -1-1-> C  <->  ( ( F  o.  G ) : A --> C  /\  Fun  `' ( F  o.  G
) ) )
1311, 12sylibr 141 1  |-  ( ( F : B -1-1-> C  /\  G : A -1-1-> B
)  ->  ( F  o.  G ) : A -1-1-> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101   `'ccnv 4372    o. ccom 4377   Fun wfun 4924   -->wf 4926   -1-1->wf1 4927
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935
This theorem is referenced by:  f1oco  5177  tposf12  5915  domtr  6296
  Copyright terms: Public domain W3C validator