ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1elima Unicode version

Theorem f1elima 5464
Description: Membership in the image of a 1-1 map. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
f1elima  |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( ( F `
 X )  e.  ( F " Y
)  <->  X  e.  Y
) )

Proof of Theorem f1elima
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 f1fn 5144 . . . 4  |-  ( F : A -1-1-> B  ->  F  Fn  A )
2 fvelimab 5281 . . . 4  |-  ( ( F  Fn  A  /\  Y  C_  A )  -> 
( ( F `  X )  e.  ( F " Y )  <->  E. z  e.  Y  ( F `  z )  =  ( F `  X ) ) )
31, 2sylan 277 . . 3  |-  ( ( F : A -1-1-> B  /\  Y  C_  A )  ->  ( ( F `
 X )  e.  ( F " Y
)  <->  E. z  e.  Y  ( F `  z )  =  ( F `  X ) ) )
433adant2 958 . 2  |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( ( F `
 X )  e.  ( F " Y
)  <->  E. z  e.  Y  ( F `  z )  =  ( F `  X ) ) )
5 ssel 3002 . . . . . . . 8  |-  ( Y 
C_  A  ->  (
z  e.  Y  -> 
z  e.  A ) )
65impac 373 . . . . . . 7  |-  ( ( Y  C_  A  /\  z  e.  Y )  ->  ( z  e.  A  /\  z  e.  Y
) )
7 f1fveq 5463 . . . . . . . . . . . 12  |-  ( ( F : A -1-1-> B  /\  ( z  e.  A  /\  X  e.  A
) )  ->  (
( F `  z
)  =  ( F `
 X )  <->  z  =  X ) )
87ancom2s 531 . . . . . . . . . . 11  |-  ( ( F : A -1-1-> B  /\  ( X  e.  A  /\  z  e.  A
) )  ->  (
( F `  z
)  =  ( F `
 X )  <->  z  =  X ) )
98biimpd 142 . . . . . . . . . 10  |-  ( ( F : A -1-1-> B  /\  ( X  e.  A  /\  z  e.  A
) )  ->  (
( F `  z
)  =  ( F `
 X )  -> 
z  =  X ) )
109anassrs 392 . . . . . . . . 9  |-  ( ( ( F : A -1-1-> B  /\  X  e.  A
)  /\  z  e.  A )  ->  (
( F `  z
)  =  ( F `
 X )  -> 
z  =  X ) )
11 eleq1 2145 . . . . . . . . . 10  |-  ( z  =  X  ->  (
z  e.  Y  <->  X  e.  Y ) )
1211biimpcd 157 . . . . . . . . 9  |-  ( z  e.  Y  ->  (
z  =  X  ->  X  e.  Y )
)
1310, 12sylan9 401 . . . . . . . 8  |-  ( ( ( ( F : A -1-1-> B  /\  X  e.  A )  /\  z  e.  A )  /\  z  e.  Y )  ->  (
( F `  z
)  =  ( F `
 X )  ->  X  e.  Y )
)
1413anasss 391 . . . . . . 7  |-  ( ( ( F : A -1-1-> B  /\  X  e.  A
)  /\  ( z  e.  A  /\  z  e.  Y ) )  -> 
( ( F `  z )  =  ( F `  X )  ->  X  e.  Y
) )
156, 14sylan2 280 . . . . . 6  |-  ( ( ( F : A -1-1-> B  /\  X  e.  A
)  /\  ( Y  C_  A  /\  z  e.  Y ) )  -> 
( ( F `  z )  =  ( F `  X )  ->  X  e.  Y
) )
1615anassrs 392 . . . . 5  |-  ( ( ( ( F : A -1-1-> B  /\  X  e.  A )  /\  Y  C_  A )  /\  z  e.  Y )  ->  (
( F `  z
)  =  ( F `
 X )  ->  X  e.  Y )
)
1716rexlimdva 2482 . . . 4  |-  ( ( ( F : A -1-1-> B  /\  X  e.  A
)  /\  Y  C_  A
)  ->  ( E. z  e.  Y  ( F `  z )  =  ( F `  X )  ->  X  e.  Y ) )
18173impa 1134 . . 3  |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( E. z  e.  Y  ( F `  z )  =  ( F `  X )  ->  X  e.  Y
) )
19 eqid 2083 . . . 4  |-  ( F `
 X )  =  ( F `  X
)
20 fveq2 5229 . . . . . 6  |-  ( z  =  X  ->  ( F `  z )  =  ( F `  X ) )
2120eqeq1d 2091 . . . . 5  |-  ( z  =  X  ->  (
( F `  z
)  =  ( F `
 X )  <->  ( F `  X )  =  ( F `  X ) ) )
2221rspcev 2710 . . . 4  |-  ( ( X  e.  Y  /\  ( F `  X )  =  ( F `  X ) )  ->  E. z  e.  Y  ( F `  z )  =  ( F `  X ) )
2319, 22mpan2 416 . . 3  |-  ( X  e.  Y  ->  E. z  e.  Y  ( F `  z )  =  ( F `  X ) )
2418, 23impbid1 140 . 2  |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( E. z  e.  Y  ( F `  z )  =  ( F `  X )  <-> 
X  e.  Y ) )
254, 24bitrd 186 1  |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( ( F `
 X )  e.  ( F " Y
)  <->  X  e.  Y
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 920    = wceq 1285    e. wcel 1434   E.wrex 2354    C_ wss 2982   "cima 4394    Fn wfn 4947   -1-1->wf1 4949   ` cfv 4952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-sbc 2825  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fv 4960
This theorem is referenced by:  f1imass  5465
  Copyright terms: Public domain W3C validator