ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1mpt Unicode version

Theorem f1mpt 5438
Description: Express injection for a mapping operation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
f1mpt.1  |-  F  =  ( x  e.  A  |->  C )
f1mpt.2  |-  ( x  =  y  ->  C  =  D )
Assertion
Ref Expression
f1mpt  |-  ( F : A -1-1-> B  <->  ( A. x  e.  A  C  e.  B  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D    y, F
Allowed substitution hints:    C( x)    D( y)    F( x)

Proof of Theorem f1mpt
StepHypRef Expression
1 f1mpt.1 . . . 4  |-  F  =  ( x  e.  A  |->  C )
2 nfmpt1 3878 . . . 4  |-  F/_ x
( x  e.  A  |->  C )
31, 2nfcxfr 2191 . . 3  |-  F/_ x F
4 nfcv 2194 . . 3  |-  F/_ y F
53, 4dff13f 5437 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
61fmpt 5347 . . 3  |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
76anbi1i 439 . 2  |-  ( ( A. x  e.  A  C  e.  B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)  <->  ( F : A
--> B  /\  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
8 f1mpt.2 . . . . . . 7  |-  ( x  =  y  ->  C  =  D )
98eleq1d 2122 . . . . . 6  |-  ( x  =  y  ->  ( C  e.  B  <->  D  e.  B ) )
109cbvralv 2550 . . . . 5  |-  ( A. x  e.  A  C  e.  B  <->  A. y  e.  A  D  e.  B )
11 raaanv 3356 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A  ( C  e.  B  /\  D  e.  B )  <->  ( A. x  e.  A  C  e.  B  /\  A. y  e.  A  D  e.  B ) )
121fvmpt2 5282 . . . . . . . . . . . . . 14  |-  ( ( x  e.  A  /\  C  e.  B )  ->  ( F `  x
)  =  C )
138, 1fvmptg 5276 . . . . . . . . . . . . . 14  |-  ( ( y  e.  A  /\  D  e.  B )  ->  ( F `  y
)  =  D )
1412, 13eqeqan12d 2071 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  A  /\  C  e.  B
)  /\  ( y  e.  A  /\  D  e.  B ) )  -> 
( ( F `  x )  =  ( F `  y )  <-> 
C  =  D ) )
1514an4s 530 . . . . . . . . . . . 12  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  ( C  e.  B  /\  D  e.  B ) )  -> 
( ( F `  x )  =  ( F `  y )  <-> 
C  =  D ) )
1615imbi1d 224 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  ( C  e.  B  /\  D  e.  B ) )  -> 
( ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y )  <->  ( C  =  D  ->  x  =  y ) ) )
1716ex 112 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( C  e.  B  /\  D  e.  B )  ->  (
( ( F `  x )  =  ( F `  y )  ->  x  =  y )  <->  ( C  =  D  ->  x  =  y ) ) ) )
1817ralimdva 2404 . . . . . . . . 9  |-  ( x  e.  A  ->  ( A. y  e.  A  ( C  e.  B  /\  D  e.  B
)  ->  A. y  e.  A  ( (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )  <->  ( C  =  D  ->  x  =  y )
) ) )
19 ralbi 2462 . . . . . . . . 9  |-  ( A. y  e.  A  (
( ( F `  x )  =  ( F `  y )  ->  x  =  y )  <->  ( C  =  D  ->  x  =  y ) )  -> 
( A. y  e.  A  ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y )  <->  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
2018, 19syl6 33 . . . . . . . 8  |-  ( x  e.  A  ->  ( A. y  e.  A  ( C  e.  B  /\  D  e.  B
)  ->  ( A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )  <->  A. y  e.  A  ( C  =  D  ->  x  =  y )
) ) )
2120ralimia 2399 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  A  ( C  e.  B  /\  D  e.  B )  ->  A. x  e.  A  ( A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y )  <->  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
22 ralbi 2462 . . . . . . 7  |-  ( A. x  e.  A  ( A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y )  <->  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  ->  ( A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
2321, 22syl 14 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A  ( C  e.  B  /\  D  e.  B )  ->  ( A. x  e.  A  A. y  e.  A  ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
2411, 23sylbir 129 . . . . 5  |-  ( ( A. x  e.  A  C  e.  B  /\  A. y  e.  A  D  e.  B )  ->  ( A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
2510, 24sylan2b 275 . . . 4  |-  ( ( A. x  e.  A  C  e.  B  /\  A. x  e.  A  C  e.  B )  ->  ( A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
2625anidms 383 . . 3  |-  ( A. x  e.  A  C  e.  B  ->  ( A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
2726pm5.32i 435 . 2  |-  ( ( A. x  e.  A  C  e.  B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)  <->  ( A. x  e.  A  C  e.  B  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
285, 7, 273bitr2i 201 1  |-  ( F : A -1-1-> B  <->  ( A. x  e.  A  C  e.  B  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    = wceq 1259    e. wcel 1409   A.wral 2323    |-> cmpt 3846   -->wf 4926   -1-1->wf1 4927   ` cfv 4930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fv 4938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator