ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1o0 Unicode version

Theorem f1o0 5215
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 10-Sep-2004.)
Assertion
Ref Expression
f1o0  |-  (/) : (/) -1-1-onto-> (/)

Proof of Theorem f1o0
StepHypRef Expression
1 eqid 2083 . 2  |-  (/)  =  (/)
2 f1o00 5213 . 2  |-  ( (/) :
(/)
-1-1-onto-> (/)  <->  (
(/)  =  (/)  /\  (/)  =  (/) ) )
31, 1, 2mpbir2an 884 1  |-  (/) : (/) -1-1-onto-> (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1285   (/)c0 3268   -1-1-onto->wf1o 4952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-nul 3925  ax-pow 3969  ax-pr 3993
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-nul 3269  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-br 3807  df-opab 3861  df-id 4077  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-fun 4955  df-fn 4956  df-f 4957  df-f1 4958  df-fo 4959  df-f1o 4960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator