ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvdm Unicode version

Theorem f1ocnvdm 5472
Description: The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006.)
Assertion
Ref Expression
f1ocnvdm  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( `' F `  C )  e.  A
)

Proof of Theorem f1ocnvdm
StepHypRef Expression
1 f1ocnv 5190 . . 3  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
2 f1of 5177 . . 3  |-  ( `' F : B -1-1-onto-> A  ->  `' F : B --> A )
31, 2syl 14 . 2  |-  ( F : A -1-1-onto-> B  ->  `' F : B --> A )
43ffvelrnda 5354 1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( `' F `  C )  e.  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1434   `'ccnv 4390   -->wf 4948   -1-1-onto->wf1o 4951   ` cfv 4952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-sbc 2825  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960
This theorem is referenced by:  f1oiso2  5517  f1ocnvfv3  5552  frecuzrdglem  9545  frecuzrdgtcl  9546  frecuzrdgsuc  9548  frecuzrdgdomlem  9551  frecuzrdgfunlem  9553  frecuzrdgsuctlem  9557  frecfzennn  9560  fzfig  9564
  Copyright terms: Public domain W3C validator