ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeng Unicode version

Theorem f1oeng 6304
Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
Assertion
Ref Expression
f1oeng  |-  ( ( A  e.  C  /\  F : A -1-1-onto-> B )  ->  A  ~~  B )

Proof of Theorem f1oeng
StepHypRef Expression
1 f1ofo 5164 . . . 4  |-  ( F : A -1-1-onto-> B  ->  F : A -onto-> B )
2 fornex 5773 . . . 4  |-  ( A  e.  C  ->  ( F : A -onto-> B  ->  B  e.  _V )
)
31, 2syl5 32 . . 3  |-  ( A  e.  C  ->  ( F : A -1-1-onto-> B  ->  B  e.  _V ) )
43imp 122 . 2  |-  ( ( A  e.  C  /\  F : A -1-1-onto-> B )  ->  B  e.  _V )
5 f1oen2g 6302 . . 3  |-  ( ( A  e.  C  /\  B  e.  _V  /\  F : A -1-1-onto-> B )  ->  A  ~~  B )
653com23 1145 . 2  |-  ( ( A  e.  C  /\  F : A -1-1-onto-> B  /\  B  e. 
_V )  ->  A  ~~  B )
74, 6mpd3an3 1270 1  |-  ( ( A  e.  C  /\  F : A -1-1-onto-> B )  ->  A  ~~  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1434   _Vcvv 2602   class class class wbr 3793   -onto->wfo 4930   -1-1-onto->wf1o 4931    ~~ cen 6285
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-en 6288
This theorem is referenced by:  f1oen  6306  f1imaeng  6339  xpen  6386  fidifsnen  6405  dif1en  6414  f1ofi  6451  f1dmvrnfibi  6452
  Copyright terms: Public domain W3C validator