![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1of | Unicode version |
Description: A one-to-one onto mapping is a mapping. (Contributed by NM, 12-Dec-2003.) |
Ref | Expression |
---|---|
f1of |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of1 5156 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | f1f 5123 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 df-f1 4937 df-f1o 4939 |
This theorem is referenced by: f1ofn 5158 f1oabexg 5169 f1ompt 5352 f1oresrab 5361 fsn 5367 fsnunf 5394 f1ocnvfv1 5448 f1ocnvfv2 5449 f1ocnvdm 5452 fcof1o 5460 isocnv 5482 isores2 5484 isotr 5487 isopolem 5492 isosolem 5494 f1oiso2 5497 f1ofveu 5531 smoiso 5951 f1oen2g 6302 en1 6346 enm 6364 fidceq 6404 dif1en 6414 fin0 6419 fin0or 6420 ac6sfi 6431 en2eqpr 6434 isotilem 6478 supisoex 6481 supisoti 6482 ordiso2 6505 frecuzrdgg 9498 sizefz1 9807 omgadd 9826 cnrecnv 9935 sumeq2d 10334 sumeq2 10335 sqpweven 10697 2sqpwodd 10698 |
Copyright terms: Public domain | W3C validator |