ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oiso2 Unicode version

Theorem f1oiso2 5494
Description: Any one-to-one onto function determines an isomorphism with an induced relation  S. (Contributed by Mario Carneiro, 9-Mar-2013.)
Hypothesis
Ref Expression
f1oiso2.1  |-  S  =  { <. x ,  y
>.  |  ( (
x  e.  B  /\  y  e.  B )  /\  ( `' H `  x ) R ( `' H `  y ) ) }
Assertion
Ref Expression
f1oiso2  |-  ( H : A -1-1-onto-> B  ->  H  Isom  R ,  S  ( A ,  B ) )
Distinct variable groups:    x, A, y   
x, B, y    x, H, y    x, R, y
Allowed substitution hints:    S( x, y)

Proof of Theorem f1oiso2
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oiso2.1 . . 3  |-  S  =  { <. x ,  y
>.  |  ( (
x  e.  B  /\  y  e.  B )  /\  ( `' H `  x ) R ( `' H `  y ) ) }
2 f1ocnvdm 5449 . . . . . . . . 9  |-  ( ( H : A -1-1-onto-> B  /\  x  e.  B )  ->  ( `' H `  x )  e.  A
)
32adantrr 456 . . . . . . . 8  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  B  /\  y  e.  B
) )  ->  ( `' H `  x )  e.  A )
433adant3 935 . . . . . . 7  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  B  /\  y  e.  B
)  /\  ( `' H `  x ) R ( `' H `  y ) )  -> 
( `' H `  x )  e.  A
)
5 f1ocnvdm 5449 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  y  e.  B )  ->  ( `' H `  y )  e.  A
)
65adantrl 455 . . . . . . . . 9  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  B  /\  y  e.  B
) )  ->  ( `' H `  y )  e.  A )
763adant3 935 . . . . . . . 8  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  B  /\  y  e.  B
)  /\  ( `' H `  x ) R ( `' H `  y ) )  -> 
( `' H `  y )  e.  A
)
8 f1ocnvfv2 5446 . . . . . . . . . . 11  |-  ( ( H : A -1-1-onto-> B  /\  x  e.  B )  ->  ( H `  ( `' H `  x ) )  =  x )
98eqcomd 2061 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  x  e.  B )  ->  x  =  ( H `
 ( `' H `  x ) ) )
10 f1ocnvfv2 5446 . . . . . . . . . . 11  |-  ( ( H : A -1-1-onto-> B  /\  y  e.  B )  ->  ( H `  ( `' H `  y ) )  =  y )
1110eqcomd 2061 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  y  e.  B )  ->  y  =  ( H `
 ( `' H `  y ) ) )
129, 11anim12dan 542 . . . . . . . . 9  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  =  ( H `
 ( `' H `  x ) )  /\  y  =  ( H `  ( `' H `  y ) ) ) )
13123adant3 935 . . . . . . . 8  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  B  /\  y  e.  B
)  /\  ( `' H `  x ) R ( `' H `  y ) )  -> 
( x  =  ( H `  ( `' H `  x ) )  /\  y  =  ( H `  ( `' H `  y ) ) ) )
14 simp3 917 . . . . . . . 8  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  B  /\  y  e.  B
)  /\  ( `' H `  x ) R ( `' H `  y ) )  -> 
( `' H `  x ) R ( `' H `  y ) )
15 fveq2 5206 . . . . . . . . . . . 12  |-  ( w  =  ( `' H `  y )  ->  ( H `  w )  =  ( H `  ( `' H `  y ) ) )
1615eqeq2d 2067 . . . . . . . . . . 11  |-  ( w  =  ( `' H `  y )  ->  (
y  =  ( H `
 w )  <->  y  =  ( H `  ( `' H `  y ) ) ) )
1716anbi2d 445 . . . . . . . . . 10  |-  ( w  =  ( `' H `  y )  ->  (
( x  =  ( H `  ( `' H `  x ) )  /\  y  =  ( H `  w
) )  <->  ( x  =  ( H `  ( `' H `  x ) )  /\  y  =  ( H `  ( `' H `  y ) ) ) ) )
18 breq2 3796 . . . . . . . . . 10  |-  ( w  =  ( `' H `  y )  ->  (
( `' H `  x ) R w  <-> 
( `' H `  x ) R ( `' H `  y ) ) )
1917, 18anbi12d 450 . . . . . . . . 9  |-  ( w  =  ( `' H `  y )  ->  (
( ( x  =  ( H `  ( `' H `  x ) )  /\  y  =  ( H `  w
) )  /\  ( `' H `  x ) R w )  <->  ( (
x  =  ( H `
 ( `' H `  x ) )  /\  y  =  ( H `  ( `' H `  y ) ) )  /\  ( `' H `  x ) R ( `' H `  y ) ) ) )
2019rspcev 2673 . . . . . . . 8  |-  ( ( ( `' H `  y )  e.  A  /\  ( ( x  =  ( H `  ( `' H `  x ) )  /\  y  =  ( H `  ( `' H `  y ) ) )  /\  ( `' H `  x ) R ( `' H `  y ) ) )  ->  E. w  e.  A  ( ( x  =  ( H `  ( `' H `  x ) )  /\  y  =  ( H `  w
) )  /\  ( `' H `  x ) R w ) )
217, 13, 14, 20syl12anc 1144 . . . . . . 7  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  B  /\  y  e.  B
)  /\  ( `' H `  x ) R ( `' H `  y ) )  ->  E. w  e.  A  ( ( x  =  ( H `  ( `' H `  x ) )  /\  y  =  ( H `  w
) )  /\  ( `' H `  x ) R w ) )
22 fveq2 5206 . . . . . . . . . . . 12  |-  ( z  =  ( `' H `  x )  ->  ( H `  z )  =  ( H `  ( `' H `  x ) ) )
2322eqeq2d 2067 . . . . . . . . . . 11  |-  ( z  =  ( `' H `  x )  ->  (
x  =  ( H `
 z )  <->  x  =  ( H `  ( `' H `  x ) ) ) )
2423anbi1d 446 . . . . . . . . . 10  |-  ( z  =  ( `' H `  x )  ->  (
( x  =  ( H `  z )  /\  y  =  ( H `  w ) )  <->  ( x  =  ( H `  ( `' H `  x ) )  /\  y  =  ( H `  w
) ) ) )
25 breq1 3795 . . . . . . . . . 10  |-  ( z  =  ( `' H `  x )  ->  (
z R w  <->  ( `' H `  x ) R w ) )
2624, 25anbi12d 450 . . . . . . . . 9  |-  ( z  =  ( `' H `  x )  ->  (
( ( x  =  ( H `  z
)  /\  y  =  ( H `  w ) )  /\  z R w )  <->  ( (
x  =  ( H `
 ( `' H `  x ) )  /\  y  =  ( H `  w ) )  /\  ( `' H `  x ) R w ) ) )
2726rexbidv 2344 . . . . . . . 8  |-  ( z  =  ( `' H `  x )  ->  ( E. w  e.  A  ( ( x  =  ( H `  z
)  /\  y  =  ( H `  w ) )  /\  z R w )  <->  E. w  e.  A  ( (
x  =  ( H `
 ( `' H `  x ) )  /\  y  =  ( H `  w ) )  /\  ( `' H `  x ) R w ) ) )
2827rspcev 2673 . . . . . . 7  |-  ( ( ( `' H `  x )  e.  A  /\  E. w  e.  A  ( ( x  =  ( H `  ( `' H `  x ) )  /\  y  =  ( H `  w
) )  /\  ( `' H `  x ) R w ) )  ->  E. z  e.  A  E. w  e.  A  ( ( x  =  ( H `  z
)  /\  y  =  ( H `  w ) )  /\  z R w ) )
294, 21, 28syl2anc 397 . . . . . 6  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  B  /\  y  e.  B
)  /\  ( `' H `  x ) R ( `' H `  y ) )  ->  E. z  e.  A  E. w  e.  A  ( ( x  =  ( H `  z
)  /\  y  =  ( H `  w ) )  /\  z R w ) )
30293expib 1118 . . . . 5  |-  ( H : A -1-1-onto-> B  ->  ( (
( x  e.  B  /\  y  e.  B
)  /\  ( `' H `  x ) R ( `' H `  y ) )  ->  E. z  e.  A  E. w  e.  A  ( ( x  =  ( H `  z
)  /\  y  =  ( H `  w ) )  /\  z R w ) ) )
31 simp3ll 986 . . . . . . . . 9  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  x  =  ( H `  z ) )
32 simp1 915 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  H : A -1-1-onto-> B
)
33 simp2l 941 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  z  e.  A
)
34 f1of 5154 . . . . . . . . . . 11  |-  ( H : A -1-1-onto-> B  ->  H : A
--> B )
3534ffvelrnda 5330 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  z  e.  A )  ->  ( H `  z
)  e.  B )
3632, 33, 35syl2anc 397 . . . . . . . . 9  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  ( H `  z )  e.  B
)
3731, 36eqeltrd 2130 . . . . . . . 8  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  x  e.  B
)
38 simp3lr 987 . . . . . . . . 9  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  y  =  ( H `  w ) )
39 simp2r 942 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  w  e.  A
)
4034ffvelrnda 5330 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  w  e.  A )  ->  ( H `  w
)  e.  B )
4132, 39, 40syl2anc 397 . . . . . . . . 9  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  ( H `  w )  e.  B
)
4238, 41eqeltrd 2130 . . . . . . . 8  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  y  e.  B
)
43 simp3r 944 . . . . . . . . 9  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  z R w )
4431eqcomd 2061 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  ( H `  z )  =  x )
45 f1ocnvfv 5447 . . . . . . . . . . 11  |-  ( ( H : A -1-1-onto-> B  /\  z  e.  A )  ->  ( ( H `  z )  =  x  ->  ( `' H `  x )  =  z ) )
4632, 33, 45syl2anc 397 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  ( ( H `
 z )  =  x  ->  ( `' H `  x )  =  z ) )
4744, 46mpd 13 . . . . . . . . 9  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  ( `' H `  x )  =  z )
4838eqcomd 2061 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  ( H `  w )  =  y )
49 f1ocnvfv 5447 . . . . . . . . . . 11  |-  ( ( H : A -1-1-onto-> B  /\  w  e.  A )  ->  ( ( H `  w )  =  y  ->  ( `' H `  y )  =  w ) )
5032, 39, 49syl2anc 397 . . . . . . . . . 10  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  ( ( H `
 w )  =  y  ->  ( `' H `  y )  =  w ) )
5148, 50mpd 13 . . . . . . . . 9  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  ( `' H `  y )  =  w )
5243, 47, 513brtr4d 3822 . . . . . . . 8  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  ( `' H `  x ) R ( `' H `  y ) )
5337, 42, 52jca31 296 . . . . . . 7  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  A  /\  w  e.  A
)  /\  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) )  ->  ( ( x  e.  B  /\  y  e.  B )  /\  ( `' H `  x ) R ( `' H `  y ) ) )
54533exp 1114 . . . . . 6  |-  ( H : A -1-1-onto-> B  ->  ( (
z  e.  A  /\  w  e.  A )  ->  ( ( ( x  =  ( H `  z )  /\  y  =  ( H `  w ) )  /\  z R w )  -> 
( ( x  e.  B  /\  y  e.  B )  /\  ( `' H `  x ) R ( `' H `  y ) ) ) ) )
5554rexlimdvv 2456 . . . . 5  |-  ( H : A -1-1-onto-> B  ->  ( E. z  e.  A  E. w  e.  A  (
( x  =  ( H `  z )  /\  y  =  ( H `  w ) )  /\  z R w )  ->  (
( x  e.  B  /\  y  e.  B
)  /\  ( `' H `  x ) R ( `' H `  y ) ) ) )
5630, 55impbid 124 . . . 4  |-  ( H : A -1-1-onto-> B  ->  ( (
( x  e.  B  /\  y  e.  B
)  /\  ( `' H `  x ) R ( `' H `  y ) )  <->  E. z  e.  A  E. w  e.  A  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) ) )
5756opabbidv 3851 . . 3  |-  ( H : A -1-1-onto-> B  ->  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  ( `' H `  x ) R ( `' H `  y ) ) }  =  { <. x ,  y >.  |  E. z  e.  A  E. w  e.  A  (
( x  =  ( H `  z )  /\  y  =  ( H `  w ) )  /\  z R w ) } )
581, 57syl5eq 2100 . 2  |-  ( H : A -1-1-onto-> B  ->  S  =  { <. x ,  y
>.  |  E. z  e.  A  E. w  e.  A  ( (
x  =  ( H `
 z )  /\  y  =  ( H `  w ) )  /\  z R w ) } )
59 f1oiso 5493 . 2  |-  ( ( H : A -1-1-onto-> B  /\  S  =  { <. x ,  y >.  |  E. z  e.  A  E. w  e.  A  (
( x  =  ( H `  z )  /\  y  =  ( H `  w ) )  /\  z R w ) } )  ->  H  Isom  R ,  S  ( A ,  B ) )
6058, 59mpdan 406 1  |-  ( H : A -1-1-onto-> B  ->  H  Isom  R ,  S  ( A ,  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    /\ w3a 896    = wceq 1259    e. wcel 1409   E.wrex 2324   class class class wbr 3792   {copab 3845   `'ccnv 4372   -1-1-onto->wf1o 4929   ` cfv 4930    Isom wiso 4931
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-isom 4939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator