ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oresrab Unicode version

Theorem f1oresrab 5361
Description: Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018.)
Hypotheses
Ref Expression
f1oresrab.1  |-  F  =  ( x  e.  A  |->  C )
f1oresrab.2  |-  ( ph  ->  F : A -1-1-onto-> B )
f1oresrab.3  |-  ( (
ph  /\  x  e.  A  /\  y  =  C )  ->  ( ch  <->  ps ) )
Assertion
Ref Expression
f1oresrab  |-  ( ph  ->  ( F  |`  { x  e.  A  |  ps } ) : {
x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch } )
Distinct variable groups:    x, y, A   
x, B, y    y, C    ph, x, y    ps, y    ch, x
Allowed substitution hints:    ps( x)    ch( y)    C( x)    F( x, y)

Proof of Theorem f1oresrab
StepHypRef Expression
1 f1oresrab.2 . . . 4  |-  ( ph  ->  F : A -1-1-onto-> B )
2 f1ofun 5159 . . . 4  |-  ( F : A -1-1-onto-> B  ->  Fun  F )
3 funcnvcnv 4989 . . . 4  |-  ( Fun 
F  ->  Fun  `' `' F )
41, 2, 33syl 17 . . 3  |-  ( ph  ->  Fun  `' `' F
)
5 f1ocnv 5170 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
61, 5syl 14 . . . . . 6  |-  ( ph  ->  `' F : B -1-1-onto-> A )
7 f1of1 5156 . . . . . 6  |-  ( `' F : B -1-1-onto-> A  ->  `' F : B -1-1-> A
)
86, 7syl 14 . . . . 5  |-  ( ph  ->  `' F : B -1-1-> A
)
9 ssrab2 3080 . . . . 5  |-  { y  e.  B  |  ch }  C_  B
10 f1ores 5172 . . . . 5  |-  ( ( `' F : B -1-1-> A  /\  { y  e.  B  |  ch }  C_  B
)  ->  ( `' F  |`  { y  e.  B  |  ch }
) : { y  e.  B  |  ch }
-1-1-onto-> ( `' F " { y  e.  B  |  ch } ) )
118, 9, 10sylancl 404 . . . 4  |-  ( ph  ->  ( `' F  |`  { y  e.  B  |  ch } ) : { y  e.  B  |  ch } -1-1-onto-> ( `' F " { y  e.  B  |  ch } ) )
12 f1oresrab.1 . . . . . . 7  |-  F  =  ( x  e.  A  |->  C )
1312mptpreima 4844 . . . . . 6  |-  ( `' F " { y  e.  B  |  ch } )  =  {
x  e.  A  |  C  e.  { y  e.  B  |  ch } }
14 f1oresrab.3 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A  /\  y  =  C )  ->  ( ch  <->  ps ) )
15143expia 1141 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
y  =  C  -> 
( ch  <->  ps )
) )
1615alrimiv 1796 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  A. y
( y  =  C  ->  ( ch  <->  ps )
) )
17 f1of 5157 . . . . . . . . . . 11  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
181, 17syl 14 . . . . . . . . . 10  |-  ( ph  ->  F : A --> B )
1912fmpt 5351 . . . . . . . . . 10  |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
2018, 19sylibr 132 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  C  e.  B )
2120r19.21bi 2450 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
22 elrab3t 2749 . . . . . . . 8  |-  ( ( A. y ( y  =  C  ->  ( ch 
<->  ps ) )  /\  C  e.  B )  ->  ( C  e.  {
y  e.  B  |  ch }  <->  ps ) )
2316, 21, 22syl2anc 403 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( C  e.  { y  e.  B  |  ch } 
<->  ps ) )
2423rabbidva 2593 . . . . . 6  |-  ( ph  ->  { x  e.  A  |  C  e.  { y  e.  B  |  ch } }  =  {
x  e.  A  |  ps } )
2513, 24syl5eq 2126 . . . . 5  |-  ( ph  ->  ( `' F " { y  e.  B  |  ch } )  =  { x  e.  A  |  ps } )
26 f1oeq3 5150 . . . . 5  |-  ( ( `' F " { y  e.  B  |  ch } )  =  {
x  e.  A  |  ps }  ->  ( ( `' F  |`  { y  e.  B  |  ch } ) : {
y  e.  B  |  ch } -1-1-onto-> ( `' F " { y  e.  B  |  ch } )  <->  ( `' F  |`  { y  e.  B  |  ch }
) : { y  e.  B  |  ch }
-1-1-onto-> { x  e.  A  |  ps } ) )
2725, 26syl 14 . . . 4  |-  ( ph  ->  ( ( `' F  |` 
{ y  e.  B  |  ch } ) : { y  e.  B  |  ch } -1-1-onto-> ( `' F " { y  e.  B  |  ch } )  <->  ( `' F  |`  { y  e.  B  |  ch }
) : { y  e.  B  |  ch }
-1-1-onto-> { x  e.  A  |  ps } ) )
2811, 27mpbid 145 . . 3  |-  ( ph  ->  ( `' F  |`  { y  e.  B  |  ch } ) : { y  e.  B  |  ch } -1-1-onto-> { x  e.  A  |  ps } )
29 f1orescnv 5173 . . 3  |-  ( ( Fun  `' `' F  /\  ( `' F  |`  { y  e.  B  |  ch } ) : { y  e.  B  |  ch } -1-1-onto-> { x  e.  A  |  ps } )  -> 
( `' `' F  |` 
{ x  e.  A  |  ps } ) : { x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch } )
304, 28, 29syl2anc 403 . 2  |-  ( ph  ->  ( `' `' F  |` 
{ x  e.  A  |  ps } ) : { x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch } )
31 rescnvcnv 4813 . . 3  |-  ( `' `' F  |`  { x  e.  A  |  ps } )  =  ( F  |`  { x  e.  A  |  ps } )
32 f1oeq1 5148 . . 3  |-  ( ( `' `' F  |`  { x  e.  A  |  ps } )  =  ( F  |`  { x  e.  A  |  ps } )  ->  (
( `' `' F  |` 
{ x  e.  A  |  ps } ) : { x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch }  <->  ( F  |` 
{ x  e.  A  |  ps } ) : { x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch } ) )
3331, 32ax-mp 7 . 2  |-  ( ( `' `' F  |`  { x  e.  A  |  ps } ) : {
x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch }  <->  ( F  |` 
{ x  e.  A  |  ps } ) : { x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch } )
3430, 33sylib 120 1  |-  ( ph  ->  ( F  |`  { x  e.  A  |  ps } ) : {
x  e.  A  |  ps } -1-1-onto-> { y  e.  B  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 920   A.wal 1283    = wceq 1285    e. wcel 1434   A.wral 2349   {crab 2353    C_ wss 2974    |-> cmpt 3847   `'ccnv 4370    |` cres 4373   "cima 4374   Fun wfun 4926   -->wf 4928   -1-1->wf1 4929   -1-1-onto->wf1o 4931
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-sbc 2817  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator