ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1stres Unicode version

Theorem f1stres 5817
Description: Mapping of a restriction of the  1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
f1stres  |-  ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B ) --> A

Proof of Theorem f1stres
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2605 . . . . . . . 8  |-  y  e. 
_V
2 vex 2605 . . . . . . . 8  |-  z  e. 
_V
31, 2op1sta 4832 . . . . . . 7  |-  U. dom  {
<. y ,  z >. }  =  y
43eleq1i 2145 . . . . . 6  |-  ( U. dom  { <. y ,  z
>. }  e.  A  <->  y  e.  A )
54biimpri 131 . . . . 5  |-  ( y  e.  A  ->  U. dom  {
<. y ,  z >. }  e.  A )
65adantr 270 . . . 4  |-  ( ( y  e.  A  /\  z  e.  B )  ->  U. dom  { <. y ,  z >. }  e.  A )
76rgen2 2448 . . 3  |-  A. y  e.  A  A. z  e.  B  U. dom  { <. y ,  z >. }  e.  A
8 sneq 3417 . . . . . . 7  |-  ( x  =  <. y ,  z
>.  ->  { x }  =  { <. y ,  z
>. } )
98dmeqd 4565 . . . . . 6  |-  ( x  =  <. y ,  z
>.  ->  dom  { x }  =  dom  { <. y ,  z >. } )
109unieqd 3620 . . . . 5  |-  ( x  =  <. y ,  z
>.  ->  U. dom  { x }  =  U. dom  { <. y ,  z >. } )
1110eleq1d 2148 . . . 4  |-  ( x  =  <. y ,  z
>.  ->  ( U. dom  { x }  e.  A  <->  U.
dom  { <. y ,  z
>. }  e.  A ) )
1211ralxp 4507 . . 3  |-  ( A. x  e.  ( A  X.  B ) U. dom  { x }  e.  A  <->  A. y  e.  A  A. z  e.  B  U. dom  { <. y ,  z
>. }  e.  A )
137, 12mpbir 144 . 2  |-  A. x  e.  ( A  X.  B
) U. dom  {
x }  e.  A
14 df-1st 5798 . . . . 5  |-  1st  =  ( x  e.  _V  |->  U.
dom  { x } )
1514reseq1i 4636 . . . 4  |-  ( 1st  |`  ( A  X.  B
) )  =  ( ( x  e.  _V  |->  U.
dom  { x } )  |`  ( A  X.  B
) )
16 ssv 3020 . . . . 5  |-  ( A  X.  B )  C_  _V
17 resmpt 4686 . . . . 5  |-  ( ( A  X.  B ) 
C_  _V  ->  ( ( x  e.  _V  |->  U.
dom  { x } )  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
dom  { x } ) )
1816, 17ax-mp 7 . . . 4  |-  ( ( x  e.  _V  |->  U.
dom  { x } )  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
dom  { x } )
1915, 18eqtri 2102 . . 3  |-  ( 1st  |`  ( A  X.  B
) )  =  ( x  e.  ( A  X.  B )  |->  U.
dom  { x } )
2019fmpt 5351 . 2  |-  ( A. x  e.  ( A  X.  B ) U. dom  { x }  e.  A  <->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B
) --> A )
2113, 20mpbi 143 1  |-  ( 1st  |`  ( A  X.  B
) ) : ( A  X.  B ) --> A
Colors of variables: wff set class
Syntax hints:    = wceq 1285    e. wcel 1434   A.wral 2349   _Vcvv 2602    C_ wss 2974   {csn 3406   <.cop 3409   U.cuni 3609    |-> cmpt 3847    X. cxp 4369   dom cdm 4371    |` cres 4373   -->wf 4928   1stc1st 5796
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-fv 4940  df-1st 5798
This theorem is referenced by:  fo1stresm  5819  1stcof  5821
  Copyright terms: Public domain W3C validator