ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1veqaeq Unicode version

Theorem f1veqaeq 5670
Description: If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
Assertion
Ref Expression
f1veqaeq  |-  ( ( F : A -1-1-> B  /\  ( C  e.  A  /\  D  e.  A
) )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
)

Proof of Theorem f1veqaeq
Dummy variables  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff13 5669 . . 3  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. c  e.  A  A. d  e.  A  (
( F `  c
)  =  ( F `
 d )  -> 
c  =  d ) ) )
2 fveq2 5421 . . . . . . . 8  |-  ( c  =  C  ->  ( F `  c )  =  ( F `  C ) )
32eqeq1d 2148 . . . . . . 7  |-  ( c  =  C  ->  (
( F `  c
)  =  ( F `
 d )  <->  ( F `  C )  =  ( F `  d ) ) )
4 eqeq1 2146 . . . . . . 7  |-  ( c  =  C  ->  (
c  =  d  <->  C  =  d ) )
53, 4imbi12d 233 . . . . . 6  |-  ( c  =  C  ->  (
( ( F `  c )  =  ( F `  d )  ->  c  =  d )  <->  ( ( F `
 C )  =  ( F `  d
)  ->  C  =  d ) ) )
6 fveq2 5421 . . . . . . . 8  |-  ( d  =  D  ->  ( F `  d )  =  ( F `  D ) )
76eqeq2d 2151 . . . . . . 7  |-  ( d  =  D  ->  (
( F `  C
)  =  ( F `
 d )  <->  ( F `  C )  =  ( F `  D ) ) )
8 eqeq2 2149 . . . . . . 7  |-  ( d  =  D  ->  ( C  =  d  <->  C  =  D ) )
97, 8imbi12d 233 . . . . . 6  |-  ( d  =  D  ->  (
( ( F `  C )  =  ( F `  d )  ->  C  =  d )  <->  ( ( F `
 C )  =  ( F `  D
)  ->  C  =  D ) ) )
105, 9rspc2v 2802 . . . . 5  |-  ( ( C  e.  A  /\  D  e.  A )  ->  ( A. c  e.  A  A. d  e.  A  ( ( F `
 c )  =  ( F `  d
)  ->  c  =  d )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
) )
1110com12 30 . . . 4  |-  ( A. c  e.  A  A. d  e.  A  (
( F `  c
)  =  ( F `
 d )  -> 
c  =  d )  ->  ( ( C  e.  A  /\  D  e.  A )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
) )
1211adantl 275 . . 3  |-  ( ( F : A --> B  /\  A. c  e.  A  A. d  e.  A  (
( F `  c
)  =  ( F `
 d )  -> 
c  =  d ) )  ->  ( ( C  e.  A  /\  D  e.  A )  ->  ( ( F `  C )  =  ( F `  D )  ->  C  =  D ) ) )
131, 12sylbi 120 . 2  |-  ( F : A -1-1-> B  -> 
( ( C  e.  A  /\  D  e.  A )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
) )
1413imp 123 1  |-  ( ( F : A -1-1-> B  /\  ( C  e.  A  /\  D  e.  A
) )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2416   -->wf 5119   -1-1->wf1 5120   ` cfv 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fv 5131
This theorem is referenced by:  f1fveq  5673  f1ocnvfvrneq  5683  f1o2ndf1  6125  fidceq  6763  difinfsnlem  6984  difinfsn  6985  iseqf1olemab  10262  iseqf1olemnanb  10263  pwle2  13193
  Copyright terms: Public domain W3C validator