ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1vrnfibi Unicode version

Theorem f1vrnfibi 6486
Description: A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 6485. (Contributed by AV, 10-Jan-2020.)
Assertion
Ref Expression
f1vrnfibi  |-  ( ( F  e.  V  /\  F : A -1-1-> B )  ->  ( F  e. 
Fin 
<->  ran  F  e.  Fin ) )

Proof of Theorem f1vrnfibi
StepHypRef Expression
1 f1dm 5147 . . . 4  |-  ( F : A -1-1-> B  ->  dom  F  =  A )
2 dmexg 4644 . . . . 5  |-  ( F  e.  V  ->  dom  F  e.  _V )
3 eleq1 2145 . . . . . 6  |-  ( A  =  dom  F  -> 
( A  e.  _V  <->  dom 
F  e.  _V )
)
43eqcoms 2086 . . . . 5  |-  ( dom 
F  =  A  -> 
( A  e.  _V  <->  dom 
F  e.  _V )
)
52, 4syl5ibr 154 . . . 4  |-  ( dom 
F  =  A  -> 
( F  e.  V  ->  A  e.  _V )
)
61, 5syl 14 . . 3  |-  ( F : A -1-1-> B  -> 
( F  e.  V  ->  A  e.  _V )
)
76impcom 123 . 2  |-  ( ( F  e.  V  /\  F : A -1-1-> B )  ->  A  e.  _V )
8 f1dmvrnfibi 6485 . 2  |-  ( ( A  e.  _V  /\  F : A -1-1-> B )  ->  ( F  e. 
Fin 
<->  ran  F  e.  Fin ) )
97, 8sylancom 411 1  |-  ( ( F  e.  V  /\  F : A -1-1-> B )  ->  ( F  e. 
Fin 
<->  ran  F  e.  Fin ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   _Vcvv 2610   dom cdm 4391   ran crn 4392   -1-1->wf1 4949   Fincfn 6309
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-iord 4149  df-on 4151  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-1st 5819  df-2nd 5820  df-1o 6086  df-er 6194  df-en 6310  df-fin 6312
This theorem is referenced by:  negfi  10329
  Copyright terms: Public domain W3C validator