ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facndiv Unicode version

Theorem facndiv 9763
Description: No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
facndiv  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  -.  ( ( ( ! `
 M )  +  1 )  /  N
)  e.  ZZ )

Proof of Theorem facndiv
StepHypRef Expression
1 nnre 8113 . . . 4  |-  ( N  e.  NN  ->  N  e.  RR )
2 recnz 8521 . . . 4  |-  ( ( N  e.  RR  /\  1  <  N )  ->  -.  ( 1  /  N
)  e.  ZZ )
31, 2sylan 277 . . 3  |-  ( ( N  e.  NN  /\  1  <  N )  ->  -.  ( 1  /  N
)  e.  ZZ )
43ad2ant2lr 494 . 2  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  -.  ( 1  /  N
)  e.  ZZ )
5 facdiv 9762 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN  /\  N  <_  M )  ->  (
( ! `  M
)  /  N )  e.  NN )
653expa 1139 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  N  <_  M
)  ->  ( ( ! `  M )  /  N )  e.  NN )
76nnzd 8549 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  N  <_  M
)  ->  ( ( ! `  M )  /  N )  e.  ZZ )
87adantrl 462 . . . 4  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ! `  M
)  /  N )  e.  ZZ )
9 zsubcl 8473 . . . . 5  |-  ( ( ( ( ( ! `
 M )  +  1 )  /  N
)  e.  ZZ  /\  ( ( ! `  M )  /  N
)  e.  ZZ )  ->  ( ( ( ( ! `  M
)  +  1 )  /  N )  -  ( ( ! `  M )  /  N
) )  e.  ZZ )
109ex 113 . . . 4  |-  ( ( ( ( ! `  M )  +  1 )  /  N )  e.  ZZ  ->  (
( ( ! `  M )  /  N
)  e.  ZZ  ->  ( ( ( ( ! `
 M )  +  1 )  /  N
)  -  ( ( ! `  M )  /  N ) )  e.  ZZ ) )
118, 10syl5com 29 . . 3  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ! `
 M )  +  1 )  /  N
)  e.  ZZ  ->  ( ( ( ( ! `
 M )  +  1 )  /  N
)  -  ( ( ! `  M )  /  N ) )  e.  ZZ ) )
12 faccl 9759 . . . . . . . . 9  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  NN )
1312nncnd 8120 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  CC )
14 peano2cn 7310 . . . . . . . 8  |-  ( ( ! `  M )  e.  CC  ->  (
( ! `  M
)  +  1 )  e.  CC )
1513, 14syl 14 . . . . . . 7  |-  ( M  e.  NN0  ->  ( ( ! `  M )  +  1 )  e.  CC )
1615ad2antrr 472 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ! `  M
)  +  1 )  e.  CC )
1713ad2antrr 472 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  ( ! `  M )  e.  CC )
18 nncn 8114 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  CC )
1918ad2antlr 473 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  N  e.  CC )
20 simplr 497 . . . . . . 7  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  N  e.  NN )
2120nnap0d 8151 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  N #  0 )
2216, 17, 19, 21divsubdirapd 7983 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ! `
 M )  +  1 )  -  ( ! `  M )
)  /  N )  =  ( ( ( ( ! `  M
)  +  1 )  /  N )  -  ( ( ! `  M )  /  N
) ) )
23 ax-1cn 7131 . . . . . . . 8  |-  1  e.  CC
24 pncan2 7382 . . . . . . . 8  |-  ( ( ( ! `  M
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( ! `
 M )  +  1 )  -  ( ! `  M )
)  =  1 )
2513, 23, 24sylancl 404 . . . . . . 7  |-  ( M  e.  NN0  ->  ( ( ( ! `  M
)  +  1 )  -  ( ! `  M ) )  =  1 )
2625oveq1d 5558 . . . . . 6  |-  ( M  e.  NN0  ->  ( ( ( ( ! `  M )  +  1 )  -  ( ! `
 M ) )  /  N )  =  ( 1  /  N
) )
2726ad2antrr 472 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ! `
 M )  +  1 )  -  ( ! `  M )
)  /  N )  =  ( 1  /  N ) )
2822, 27eqtr3d 2116 . . . 4  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ! `
 M )  +  1 )  /  N
)  -  ( ( ! `  M )  /  N ) )  =  ( 1  /  N ) )
2928eleq1d 2148 . . 3  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ( ! `  M )  +  1 )  /  N )  -  (
( ! `  M
)  /  N ) )  e.  ZZ  <->  ( 1  /  N )  e.  ZZ ) )
3011, 29sylibd 147 . 2  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ! `
 M )  +  1 )  /  N
)  e.  ZZ  ->  ( 1  /  N )  e.  ZZ ) )
314, 30mtod 622 1  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  -.  ( ( ( ! `
 M )  +  1 )  /  N
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   class class class wbr 3793   ` cfv 4932  (class class class)co 5543   CCcc 7041   RRcr 7042   1c1 7044    + caddc 7046    < clt 7215    <_ cle 7216    - cmin 7346    / cdiv 7827   NNcn 8106   NN0cn0 8355   ZZcz 8432   !cfa 9749
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-ilim 4132  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-frec 6040  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828  df-inn 8107  df-n0 8356  df-z 8433  df-uz 8701  df-iseq 9522  df-fac 9750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator