ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcnvres Unicode version

Theorem fcnvres 5101
Description: The converse of a restriction of a function. (Contributed by NM, 26-Mar-1998.)
Assertion
Ref Expression
fcnvres  |-  ( F : A --> B  ->  `' ( F  |`  A )  =  ( `' F  |`  B ) )

Proof of Theorem fcnvres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 4731 . 2  |-  Rel  `' ( F  |`  A )
2 relres 4667 . 2  |-  Rel  ( `' F  |`  B )
3 opelf 5090 . . . . . . 7  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  (
x  e.  A  /\  y  e.  B )
)
43simpld 109 . . . . . 6  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  x  e.  A )
54ex 112 . . . . 5  |-  ( F : A --> B  -> 
( <. x ,  y
>.  e.  F  ->  x  e.  A ) )
65pm4.71d 379 . . . 4  |-  ( F : A --> B  -> 
( <. x ,  y
>.  e.  F  <->  ( <. x ,  y >.  e.  F  /\  x  e.  A
) ) )
7 vex 2577 . . . . . 6  |-  y  e. 
_V
8 vex 2577 . . . . . 6  |-  x  e. 
_V
97, 8opelcnv 4545 . . . . 5  |-  ( <.
y ,  x >.  e.  `' ( F  |`  A )  <->  <. x ,  y >.  e.  ( F  |`  A ) )
107opelres 4645 . . . . 5  |-  ( <.
x ,  y >.  e.  ( F  |`  A )  <-> 
( <. x ,  y
>.  e.  F  /\  x  e.  A ) )
119, 10bitri 177 . . . 4  |-  ( <.
y ,  x >.  e.  `' ( F  |`  A )  <->  ( <. x ,  y >.  e.  F  /\  x  e.  A
) )
126, 11syl6bbr 191 . . 3  |-  ( F : A --> B  -> 
( <. x ,  y
>.  e.  F  <->  <. y ,  x >.  e.  `' ( F  |`  A ) ) )
133simprd 111 . . . . . 6  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  y  e.  B )
1413ex 112 . . . . 5  |-  ( F : A --> B  -> 
( <. x ,  y
>.  e.  F  ->  y  e.  B ) )
1514pm4.71d 379 . . . 4  |-  ( F : A --> B  -> 
( <. x ,  y
>.  e.  F  <->  ( <. x ,  y >.  e.  F  /\  y  e.  B
) ) )
168opelres 4645 . . . . 5  |-  ( <.
y ,  x >.  e.  ( `' F  |`  B )  <->  ( <. y ,  x >.  e.  `' F  /\  y  e.  B
) )
177, 8opelcnv 4545 . . . . . 6  |-  ( <.
y ,  x >.  e.  `' F  <->  <. x ,  y
>.  e.  F )
1817anbi1i 439 . . . . 5  |-  ( (
<. y ,  x >.  e.  `' F  /\  y  e.  B )  <->  ( <. x ,  y >.  e.  F  /\  y  e.  B
) )
1916, 18bitri 177 . . . 4  |-  ( <.
y ,  x >.  e.  ( `' F  |`  B )  <->  ( <. x ,  y >.  e.  F  /\  y  e.  B
) )
2015, 19syl6bbr 191 . . 3  |-  ( F : A --> B  -> 
( <. x ,  y
>.  e.  F  <->  <. y ,  x >.  e.  ( `' F  |`  B ) ) )
2112, 20bitr3d 183 . 2  |-  ( F : A --> B  -> 
( <. y ,  x >.  e.  `' ( F  |`  A )  <->  <. y ,  x >.  e.  ( `' F  |`  B ) ) )
221, 2, 21eqrelrdv 4464 1  |-  ( F : A --> B  ->  `' ( F  |`  A )  =  ( `' F  |`  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    = wceq 1259    e. wcel 1409   <.cop 3406   `'ccnv 4372    |` cres 4375   -->wf 4926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-xp 4379  df-rel 4380  df-cnv 4381  df-dm 4383  df-rn 4384  df-res 4385  df-fun 4932  df-fn 4933  df-f 4934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator