ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fco2 Unicode version

Theorem fco2 5082
Description: Functionality of a composition with weakened out of domain condition on the first argument. (Contributed by Stefan O'Rear, 11-Mar-2015.)
Assertion
Ref Expression
fco2  |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )

Proof of Theorem fco2
StepHypRef Expression
1 fco 5081 . 2  |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( ( F  |`  B )  o.  G
) : A --> C )
2 frn 5077 . . . . 5  |-  ( G : A --> B  ->  ran  G  C_  B )
3 cores 4848 . . . . 5  |-  ( ran 
G  C_  B  ->  ( ( F  |`  B )  o.  G )  =  ( F  o.  G
) )
42, 3syl 14 . . . 4  |-  ( G : A --> B  -> 
( ( F  |`  B )  o.  G
)  =  ( F  o.  G ) )
54adantl 271 . . 3  |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( ( F  |`  B )  o.  G
)  =  ( F  o.  G ) )
65feq1d 5059 . 2  |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( ( ( F  |`  B )  o.  G ) : A --> C 
<->  ( F  o.  G
) : A --> C ) )
71, 6mpbid 145 1  |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    C_ wss 2974   ran crn 4366    |` cres 4367    o. ccom 4369   -->wf 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-br 3788  df-opab 3842  df-id 4050  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-fun 4928  df-fn 4929  df-f 4930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator