ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feqresmpt Unicode version

Theorem feqresmpt 5259
Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
feqmptd.1  |-  ( ph  ->  F : A --> B )
feqresmpt.2  |-  ( ph  ->  C  C_  A )
Assertion
Ref Expression
feqresmpt  |-  ( ph  ->  ( F  |`  C )  =  ( x  e.  C  |->  ( F `  x ) ) )
Distinct variable groups:    x, A    x, C    x, F
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem feqresmpt
StepHypRef Expression
1 feqmptd.1 . . . 4  |-  ( ph  ->  F : A --> B )
2 feqresmpt.2 . . . 4  |-  ( ph  ->  C  C_  A )
3 fssres 5097 . . . 4  |-  ( ( F : A --> B  /\  C  C_  A )  -> 
( F  |`  C ) : C --> B )
41, 2, 3syl2anc 403 . . 3  |-  ( ph  ->  ( F  |`  C ) : C --> B )
54feqmptd 5258 . 2  |-  ( ph  ->  ( F  |`  C )  =  ( x  e.  C  |->  ( ( F  |`  C ) `  x
) ) )
6 fvres 5230 . . 3  |-  ( x  e.  C  ->  (
( F  |`  C ) `
 x )  =  ( F `  x
) )
76mpteq2ia 3872 . 2  |-  ( x  e.  C  |->  ( ( F  |`  C ) `  x ) )  =  ( x  e.  C  |->  ( F `  x
) )
85, 7syl6eq 2130 1  |-  ( ph  ->  ( F  |`  C )  =  ( x  e.  C  |->  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1285    C_ wss 2974    |-> cmpt 3847    |` cres 4373   -->wf 4928   ` cfv 4932
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-sbc 2817  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-fv 4940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator