Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fesapo Unicode version

Theorem fesapo 2063
 Description: "Fesapo", one of the syllogisms of Aristotelian logic. No is , all is , and exist, therefore some is not . (In Aristotelian notation, EAO-4: PeM and MaS therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
fesapo.maj
fesapo.min
fesapo.e
Assertion
Ref Expression
fesapo

Proof of Theorem fesapo
StepHypRef Expression
1 fesapo.e . 2
2 fesapo.min . . . 4
32spi 1470 . . 3
4 fesapo.maj . . . . 5
54spi 1470 . . . 4
65con2i 590 . . 3
73, 6jca 300 . 2
81, 7eximii 1534 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 102  wal 1283  wex 1422 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441  ax-ial 1468 This theorem depends on definitions:  df-bi 115 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator