![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ffn | Unicode version |
Description: A mapping is a function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
ffn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 4936 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 268 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 df-f 4936 |
This theorem is referenced by: ffun 5079 frel 5080 fdm 5081 fresin 5099 fcoi1 5101 feu 5103 fnconstg 5115 f1fn 5124 fofn 5139 dffo2 5141 f1ofn 5158 feqmptd 5258 fvco3 5276 ffvelrn 5332 dff2 5343 dffo3 5346 dffo4 5347 dffo5 5348 f1ompt 5352 ffnfv 5355 fcompt 5365 fsn2 5369 fconst2g 5408 fconstfvm 5411 fex 5420 dff13 5439 cocan1 5458 off 5755 suppssof1 5759 ofco 5760 caofref 5763 caofrss 5766 caoftrn 5767 fo1stresm 5819 fo2ndresm 5820 1stcof 5821 2ndcof 5822 fo2ndf 5879 tposf2 5917 smoiso 5951 tfrcllemssrecs 6001 tfrcllemsucaccv 6003 dfz2 8501 uzn0 8715 unirnioo 9072 dfioo2 9073 ioorebasg 9074 fzen 9138 fseq1p1m1 9187 2ffzeq 9228 fvinim0ffz 9327 frecuzrdglem 9493 frecuzrdgtcl 9494 frecuzrdg0 9495 frecuzrdgfunlem 9501 frecuzrdg0t 9504 iseqvalt 9532 iseqoveq 9540 iseqss 9541 iseqsst 9542 iseqfeq2 9545 iseqfeq 9547 iser0f 9569 facnn 9751 fac0 9752 shftf 9856 uzin2 10011 rexanuz 10012 eucialg 10585 |
Copyright terms: Public domain | W3C validator |