ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  findcard2 Unicode version

Theorem findcard2 6445
Description: Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010.)
Hypotheses
Ref Expression
findcard2.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
findcard2.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
findcard2.3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ph  <->  th )
)
findcard2.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
findcard2.5  |-  ps
findcard2.6  |-  ( y  e.  Fin  ->  ( ch  ->  th ) )
Assertion
Ref Expression
findcard2  |-  ( A  e.  Fin  ->  ta )
Distinct variable groups:    x, y, z, A    ps, x    ch, x    th, x    ta, x    ph, y, z
Allowed substitution hints:    ph( x)    ps( y,
z)    ch( y, z)    th( y,
z)    ta( y, z)

Proof of Theorem findcard2
Dummy variables  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 findcard2.4 . 2  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
2 isfi 6329 . . 3  |-  ( x  e.  Fin  <->  E. w  e.  om  x  ~~  w
)
3 breq2 3809 . . . . . . . 8  |-  ( w  =  (/)  ->  ( x 
~~  w  <->  x  ~~  (/) ) )
43imbi1d 229 . . . . . . 7  |-  ( w  =  (/)  ->  ( ( x  ~~  w  ->  ph )  <->  ( x  ~~  (/) 
->  ph ) ) )
54albidv 1747 . . . . . 6  |-  ( w  =  (/)  ->  ( A. x ( x  ~~  w  ->  ph )  <->  A. x
( x  ~~  (/)  ->  ph )
) )
6 breq2 3809 . . . . . . . 8  |-  ( w  =  v  ->  (
x  ~~  w  <->  x  ~~  v ) )
76imbi1d 229 . . . . . . 7  |-  ( w  =  v  ->  (
( x  ~~  w  ->  ph )  <->  ( x  ~~  v  ->  ph )
) )
87albidv 1747 . . . . . 6  |-  ( w  =  v  ->  ( A. x ( x  ~~  w  ->  ph )  <->  A. x
( x  ~~  v  ->  ph ) ) )
9 breq2 3809 . . . . . . . 8  |-  ( w  =  suc  v  -> 
( x  ~~  w  <->  x 
~~  suc  v )
)
109imbi1d 229 . . . . . . 7  |-  ( w  =  suc  v  -> 
( ( x  ~~  w  ->  ph )  <->  ( x  ~~  suc  v  ->  ph )
) )
1110albidv 1747 . . . . . 6  |-  ( w  =  suc  v  -> 
( A. x ( x  ~~  w  ->  ph )  <->  A. x ( x 
~~  suc  v  ->  ph ) ) )
12 en0 6363 . . . . . . . 8  |-  ( x 
~~  (/)  <->  x  =  (/) )
13 findcard2.5 . . . . . . . . 9  |-  ps
14 findcard2.1 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
1513, 14mpbiri 166 . . . . . . . 8  |-  ( x  =  (/)  ->  ph )
1612, 15sylbi 119 . . . . . . 7  |-  ( x 
~~  (/)  ->  ph )
1716ax-gen 1379 . . . . . 6  |-  A. x
( x  ~~  (/)  ->  ph )
18 peano3 4365 . . . . . . . . . . . . 13  |-  ( v  e.  om  ->  suc  v  =/=  (/) )
1918adantr 270 . . . . . . . . . . . 12  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  suc  v  =/=  (/) )
20 breq1 3808 . . . . . . . . . . . . . . . 16  |-  ( w  =  (/)  ->  ( w 
~~  suc  v  <->  (/)  ~~  suc  v ) )
2120anbi2d 452 . . . . . . . . . . . . . . 15  |-  ( w  =  (/)  ->  ( ( v  e.  om  /\  w  ~~  suc  v )  <-> 
( v  e.  om  /\  (/)  ~~  suc  v ) ) )
22 peano1 4363 . . . . . . . . . . . . . . . . . 18  |-  (/)  e.  om
23 peano2 4364 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  om  ->  suc  v  e.  om )
24 nneneq 6413 . . . . . . . . . . . . . . . . . 18  |-  ( (
(/)  e.  om  /\  suc  v  e.  om )  ->  ( (/)  ~~  suc  v  <->  (/)  =  suc  v ) )
2522, 23, 24sylancr 405 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  om  ->  ( (/)  ~~  suc  v  <->  (/)  =  suc  v ) )
2625biimpa 290 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  om  /\  (/)  ~~  suc  v )  ->  (/)  =  suc  v )
2726eqcomd 2088 . . . . . . . . . . . . . . 15  |-  ( ( v  e.  om  /\  (/)  ~~  suc  v )  ->  suc  v  =  (/) )
2821, 27syl6bi 161 . . . . . . . . . . . . . 14  |-  ( w  =  (/)  ->  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  suc  v  =  (/) ) )
2928com12 30 . . . . . . . . . . . . 13  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( w  =  (/)  ->  suc  v  =  (/) ) )
3029necon3d 2293 . . . . . . . . . . . 12  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( suc  v  =/=  (/)  ->  w  =/=  (/) ) )
3119, 30mpd 13 . . . . . . . . . . 11  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  w  =/=  (/) )
3231ex 113 . . . . . . . . . 10  |-  ( v  e.  om  ->  (
w  ~~  suc  v  ->  w  =/=  (/) ) )
33 nnfi 6428 . . . . . . . . . . . . . . . 16  |-  ( suc  v  e.  om  ->  suc  v  e.  Fin )
3423, 33syl 14 . . . . . . . . . . . . . . 15  |-  ( v  e.  om  ->  suc  v  e.  Fin )
3534adantr 270 . . . . . . . . . . . . . 14  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  suc  v  e.  Fin )
36 enfi 6429 . . . . . . . . . . . . . . 15  |-  ( w 
~~  suc  v  ->  ( w  e.  Fin  <->  suc  v  e. 
Fin ) )
3736adantl 271 . . . . . . . . . . . . . 14  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( w  e. 
Fin 
<->  suc  v  e.  Fin ) )
3835, 37mpbird 165 . . . . . . . . . . . . 13  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  w  e.  Fin )
39 fin0 6441 . . . . . . . . . . . . 13  |-  ( w  e.  Fin  ->  (
w  =/=  (/)  <->  E. z 
z  e.  w ) )
4038, 39syl 14 . . . . . . . . . . . 12  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( w  =/=  (/) 
<->  E. z  z  e.  w ) )
41 simpll 496 . . . . . . . . . . . . . . 15  |-  ( ( ( v  e.  om  /\  w  ~~  suc  v
)  /\  z  e.  w )  ->  v  e.  om )
42 dif1en 6435 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  om  /\  w  ~~  suc  v  /\  z  e.  w )  ->  ( w  \  {
z } )  ~~  v )
43423expa 1139 . . . . . . . . . . . . . . 15  |-  ( ( ( v  e.  om  /\  w  ~~  suc  v
)  /\  z  e.  w )  ->  (
w  \  { z } )  ~~  v
)
44 fidifsnid 6427 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  Fin  /\  z  e.  w )  ->  ( ( w  \  { z } )  u.  { z } )  =  w )
4538, 44sylan 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( v  e.  om  /\  w  ~~  suc  v
)  /\  z  e.  w )  ->  (
( w  \  {
z } )  u. 
{ z } )  =  w )
46 vex 2613 . . . . . . . . . . . . . . . . . . 19  |-  w  e. 
_V
47 difexg 3939 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  _V  ->  (
w  \  { z } )  e.  _V )
4846, 47ax-mp 7 . . . . . . . . . . . . . . . . . 18  |-  ( w 
\  { z } )  e.  _V
49 breq1 3808 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( w  \  { z } )  ->  ( y  ~~  v 
<->  ( w  \  {
z } )  ~~  v ) )
5049anbi2d 452 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( w  \  { z } )  ->  ( ( v  e.  om  /\  y  ~~  v )  <->  ( v  e.  om  /\  ( w 
\  { z } )  ~~  v ) ) )
51 uneq1 3129 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  ( w  \  { z } )  ->  ( y  u. 
{ z } )  =  ( ( w 
\  { z } )  u.  { z } ) )
5251sbceq1d 2829 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( w  \  { z } )  ->  ( [. (
y  u.  { z } )  /  x ]. ph  <->  [. ( ( w 
\  { z } )  u.  { z } )  /  x ]. ph ) )
5352imbi2d 228 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( w  \  { z } )  ->  ( ( A. x ( x  ~~  v  ->  ph )  ->  [. (
y  u.  { z } )  /  x ]. ph )  <->  ( A. x ( x  ~~  v  ->  ph )  ->  [. (
( w  \  {
z } )  u. 
{ z } )  /  x ]. ph )
) )
5450, 53imbi12d 232 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( w  \  { z } )  ->  ( ( ( v  e.  om  /\  y  ~~  v )  -> 
( A. x ( x  ~~  v  ->  ph )  ->  [. (
y  u.  { z } )  /  x ]. ph ) )  <->  ( (
v  e.  om  /\  ( w  \  { z } )  ~~  v
)  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. (
( w  \  {
z } )  u. 
{ z } )  /  x ]. ph )
) ) )
55 breq1 3808 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  y  ->  (
x  ~~  v  <->  y  ~~  v ) )
56 findcard2.2 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
5755, 56imbi12d 232 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  y  ->  (
( x  ~~  v  ->  ph )  <->  ( y  ~~  v  ->  ch )
) )
5857spv 1783 . . . . . . . . . . . . . . . . . . . 20  |-  ( A. x ( x  ~~  v  ->  ph )  ->  (
y  ~~  v  ->  ch ) )
59 rspe 2417 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( v  e.  om  /\  y  ~~  v )  ->  E. v  e.  om  y  ~~  v )
60 isfi 6329 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  Fin  <->  E. v  e.  om  y  ~~  v
)
6159, 60sylibr 132 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( v  e.  om  /\  y  ~~  v )  -> 
y  e.  Fin )
62 pm2.27 39 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y 
~~  v  ->  (
( y  ~~  v  ->  ch )  ->  ch ) )
6362adantl 271 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( v  e.  om  /\  y  ~~  v )  -> 
( ( y  ~~  v  ->  ch )  ->  ch ) )
64 findcard2.6 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  Fin  ->  ( ch  ->  th ) )
6561, 63, 64sylsyld 57 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( v  e.  om  /\  y  ~~  v )  -> 
( ( y  ~~  v  ->  ch )  ->  th ) )
6658, 65syl5 32 . . . . . . . . . . . . . . . . . . 19  |-  ( ( v  e.  om  /\  y  ~~  v )  -> 
( A. x ( x  ~~  v  ->  ph )  ->  th )
)
67 vex 2613 . . . . . . . . . . . . . . . . . . . . 21  |-  y  e. 
_V
68 vex 2613 . . . . . . . . . . . . . . . . . . . . . 22  |-  z  e. 
_V
6968snex 3977 . . . . . . . . . . . . . . . . . . . . 21  |-  { z }  e.  _V
7067, 69unex 4222 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  u.  { z } )  e.  _V
71 findcard2.3 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ph  <->  th )
)
7270, 71sbcie 2857 . . . . . . . . . . . . . . . . . . 19  |-  ( [. ( y  u.  {
z } )  /  x ]. ph  <->  th )
7366, 72syl6ibr 160 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  e.  om  /\  y  ~~  v )  -> 
( A. x ( x  ~~  v  ->  ph )  ->  [. (
y  u.  { z } )  /  x ]. ph ) )
7448, 54, 73vtocl 2662 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  om  /\  ( w  \  { z } )  ~~  v
)  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. (
( w  \  {
z } )  u. 
{ z } )  /  x ]. ph )
)
75 dfsbcq 2826 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  \  {
z } )  u. 
{ z } )  =  w  ->  ( [. ( ( w  \  { z } )  u.  { z } )  /  x ]. ph  <->  [. w  /  x ]. ph ) )
7675imbi2d 228 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  \  {
z } )  u. 
{ z } )  =  w  ->  (
( A. x ( x  ~~  v  ->  ph )  ->  [. (
( w  \  {
z } )  u. 
{ z } )  /  x ]. ph )  <->  ( A. x ( x 
~~  v  ->  ph )  ->  [. w  /  x ]. ph ) ) )
7774, 76syl5ib 152 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  \  {
z } )  u. 
{ z } )  =  w  ->  (
( v  e.  om  /\  ( w  \  {
z } )  ~~  v )  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) )
7845, 77syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( v  e.  om  /\  w  ~~  suc  v
)  /\  z  e.  w )  ->  (
( v  e.  om  /\  ( w  \  {
z } )  ~~  v )  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) )
7941, 43, 78mp2and 424 . . . . . . . . . . . . . 14  |-  ( ( ( v  e.  om  /\  w  ~~  suc  v
)  /\  z  e.  w )  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
)
8079ex 113 . . . . . . . . . . . . 13  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( z  e.  w  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) )
8180exlimdv 1742 . . . . . . . . . . . 12  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( E. z 
z  e.  w  -> 
( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) )
8240, 81sylbid 148 . . . . . . . . . . 11  |-  ( ( v  e.  om  /\  w  ~~  suc  v )  ->  ( w  =/=  (/)  ->  ( A. x
( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) )
8382ex 113 . . . . . . . . . 10  |-  ( v  e.  om  ->  (
w  ~~  suc  v  -> 
( w  =/=  (/)  ->  ( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) ) )
8432, 83mpdd 40 . . . . . . . . 9  |-  ( v  e.  om  ->  (
w  ~~  suc  v  -> 
( A. x ( x  ~~  v  ->  ph )  ->  [. w  /  x ]. ph )
) )
8584com23 77 . . . . . . . 8  |-  ( v  e.  om  ->  ( A. x ( x  ~~  v  ->  ph )  ->  (
w  ~~  suc  v  ->  [. w  /  x ]. ph ) ) )
8685alrimdv 1799 . . . . . . 7  |-  ( v  e.  om  ->  ( A. x ( x  ~~  v  ->  ph )  ->  A. w
( w  ~~  suc  v  ->  [. w  /  x ]. ph ) ) )
87 nfv 1462 . . . . . . . 8  |-  F/ w
( x  ~~  suc  v  ->  ph )
88 nfv 1462 . . . . . . . . 9  |-  F/ x  w  ~~  suc  v
89 nfsbc1v 2842 . . . . . . . . 9  |-  F/ x [. w  /  x ]. ph
9088, 89nfim 1505 . . . . . . . 8  |-  F/ x
( w  ~~  suc  v  ->  [. w  /  x ]. ph )
91 breq1 3808 . . . . . . . . 9  |-  ( x  =  w  ->  (
x  ~~  suc  v  <->  w  ~~  suc  v ) )
92 sbceq1a 2833 . . . . . . . . 9  |-  ( x  =  w  ->  ( ph 
<-> 
[. w  /  x ]. ph ) )
9391, 92imbi12d 232 . . . . . . . 8  |-  ( x  =  w  ->  (
( x  ~~  suc  v  ->  ph )  <->  ( w  ~~  suc  v  ->  [. w  /  x ]. ph )
) )
9487, 90, 93cbval 1679 . . . . . . 7  |-  ( A. x ( x  ~~  suc  v  ->  ph )  <->  A. w ( w  ~~  suc  v  ->  [. w  /  x ]. ph )
)
9586, 94syl6ibr 160 . . . . . 6  |-  ( v  e.  om  ->  ( A. x ( x  ~~  v  ->  ph )  ->  A. x
( x  ~~  suc  v  ->  ph ) ) )
965, 8, 11, 17, 95finds1 4371 . . . . 5  |-  ( w  e.  om  ->  A. x
( x  ~~  w  ->  ph ) )
979619.21bi 1491 . . . 4  |-  ( w  e.  om  ->  (
x  ~~  w  ->  ph ) )
9897rexlimiv 2476 . . 3  |-  ( E. w  e.  om  x  ~~  w  ->  ph )
992, 98sylbi 119 . 2  |-  ( x  e.  Fin  ->  ph )
1001, 99vtoclga 2673 1  |-  ( A  e.  Fin  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1283    = wceq 1285   E.wex 1422    e. wcel 1434    =/= wne 2249   E.wrex 2354   _Vcvv 2610   [.wsbc 2824    \ cdif 2979    u. cun 2980   (/)c0 3267   {csn 3416   class class class wbr 3805   suc csuc 4148   omcom 4359    ~~ cen 6306   Fincfn 6308
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-iord 4149  df-on 4151  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-er 6193  df-en 6309  df-fin 6311
This theorem is referenced by:  rexfiuz  10076  fimaxre2  10310
  Copyright terms: Public domain W3C validator