ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finds1 Unicode version

Theorem finds1 4371
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 22-Mar-2006.)
Hypotheses
Ref Expression
finds1.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
finds1.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
finds1.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
finds1.4  |-  ps
finds1.5  |-  ( y  e.  om  ->  ( ch  ->  th ) )
Assertion
Ref Expression
finds1  |-  ( x  e.  om  ->  ph )
Distinct variable groups:    x, y    ps, x    ch, x    th, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)

Proof of Theorem finds1
StepHypRef Expression
1 eqid 2083 . 2  |-  (/)  =  (/)
2 finds1.1 . . 3  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
3 finds1.2 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
4 finds1.3 . . 3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
5 finds1.4 . . . 4  |-  ps
65a1i 9 . . 3  |-  ( (/)  =  (/)  ->  ps )
7 finds1.5 . . . 4  |-  ( y  e.  om  ->  ( ch  ->  th ) )
87a1d 22 . . 3  |-  ( y  e.  om  ->  ( (/)  =  (/)  ->  ( ch 
->  th ) ) )
92, 3, 4, 6, 8finds2 4370 . 2  |-  ( x  e.  om  ->  ( (/)  =  (/)  ->  ph )
)
101, 9mpi 15 1  |-  ( x  e.  om  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1285    e. wcel 1434   (/)c0 3267   suc csuc 4148   omcom 4359
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-iinf 4357
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-uni 3622  df-int 3657  df-suc 4154  df-iom 4360
This theorem is referenced by:  findcard  6444  findcard2  6445  findcard2s  6446
  Copyright terms: Public domain W3C validator