ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finnum Unicode version

Theorem finnum 6581
Description: Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
finnum  |-  ( A  e.  Fin  ->  A  e.  dom  card )

Proof of Theorem finnum
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isfi 6330 . 2  |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x
)
2 nnon 4378 . . . 4  |-  ( x  e.  om  ->  x  e.  On )
3 ensym 6350 . . . 4  |-  ( A 
~~  x  ->  x  ~~  A )
4 isnumi 6580 . . . 4  |-  ( ( x  e.  On  /\  x  ~~  A )  ->  A  e.  dom  card )
52, 3, 4syl2an 283 . . 3  |-  ( ( x  e.  om  /\  A  ~~  x )  ->  A  e.  dom  card )
65rexlimiva 2477 . 2  |-  ( E. x  e.  om  A  ~~  x  ->  A  e. 
dom  card )
71, 6sylbi 119 1  |-  ( A  e.  Fin  ->  A  e.  dom  card )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1434   E.wrex 2354   class class class wbr 3805   Oncon0 4146   omcom 4359   dom cdm 4391    ~~ cen 6307   Fincfn 6309   cardccrd 6577
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-iinf 4357
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2612  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-iord 4149  df-on 4151  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-er 6194  df-en 6310  df-fin 6312  df-card 6578
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator