Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fintm Unicode version

Theorem fintm 5106
 Description: Function into an intersection. (Contributed by Jim Kingdon, 28-Dec-2018.)
Hypothesis
Ref Expression
fintm.1
Assertion
Ref Expression
fintm
Distinct variable groups:   ,   ,   ,

Proof of Theorem fintm
StepHypRef Expression
1 ssint 3660 . . . 4
21anbi2i 445 . . 3
3 fintm.1 . . . 4
4 r19.28mv 3341 . . . 4
53, 4ax-mp 7 . . 3
62, 5bitr4i 185 . 2
7 df-f 4936 . 2
8 df-f 4936 . . 3
98ralbii 2373 . 2
106, 7, 93bitr4i 210 1
 Colors of variables: wff set class Syntax hints:   wa 102   wb 103  wex 1422   wcel 1434  wral 2349   wss 2974  cint 3644   crn 4372   wfn 4927  wf 4928 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-v 2604  df-in 2980  df-ss 2987  df-int 3645  df-f 4936 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator