ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiunsnnn Unicode version

Theorem fiunsnnn 6415
Description: Adding one element to a finite set which is equinumerous to a natural number. (Contributed by Jim Kingdon, 13-Sep-2021.)
Assertion
Ref Expression
fiunsnnn  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  -> 
( A  u.  { B } )  ~~  suc  N )

Proof of Theorem fiunsnnn
StepHypRef Expression
1 simprr 499 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  ->  A  ~~  N )
2 en2sn 6358 . . . 4  |-  ( ( B  e.  ( _V 
\  A )  /\  N  e.  om )  ->  { B }  ~~  { N } )
32ad2ant2lr 494 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  ->  { B }  ~~  { N } )
4 simplr 497 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  ->  B  e.  ( _V  \  A ) )
54eldifbd 2986 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  ->  -.  B  e.  A
)
6 disjsn 3462 . . . 4  |-  ( ( A  i^i  { B } )  =  (/)  <->  -.  B  e.  A )
75, 6sylibr 132 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  -> 
( A  i^i  { B } )  =  (/) )
8 elirr 4292 . . . . 5  |-  -.  N  e.  N
9 disjsn 3462 . . . . 5  |-  ( ( N  i^i  { N } )  =  (/)  <->  -.  N  e.  N )
108, 9mpbir 144 . . . 4  |-  ( N  i^i  { N }
)  =  (/)
1110a1i 9 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  -> 
( N  i^i  { N } )  =  (/) )
12 unen 6361 . . 3  |-  ( ( ( A  ~~  N  /\  { B }  ~~  { N } )  /\  ( ( A  i^i  { B } )  =  (/)  /\  ( N  i^i  { N } )  =  (/) ) )  ->  ( A  u.  { B } )  ~~  ( N  u.  { N } ) )
131, 3, 7, 11, 12syl22anc 1171 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  -> 
( A  u.  { B } )  ~~  ( N  u.  { N } ) )
14 df-suc 4134 . 2  |-  suc  N  =  ( N  u.  { N } )
1513, 14syl6breqr 3833 1  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( N  e. 
om  /\  A  ~~  N ) )  -> 
( A  u.  { B } )  ~~  suc  N )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   _Vcvv 2602    \ cdif 2971    u. cun 2972    i^i cin 2973   (/)c0 3258   {csn 3406   class class class wbr 3793   suc csuc 4128   omcom 4339    ~~ cen 6285   Fincfn 6287
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-v 2604  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-id 4056  df-suc 4134  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-1o 6065  df-er 6172  df-en 6288
This theorem is referenced by:  php5fin  6416  sizeunlem  9828
  Copyright terms: Public domain W3C validator