ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flodddiv4 Unicode version

Theorem flodddiv4 10478
Description: The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021.)
Assertion
Ref Expression
flodddiv4  |-  ( ( M  e.  ZZ  /\  N  =  ( (
2  x.  M )  +  1 ) )  ->  ( |_ `  ( N  /  4
) )  =  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) ) )

Proof of Theorem flodddiv4
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq1 5550 . . . 4  |-  ( N  =  ( ( 2  x.  M )  +  1 )  ->  ( N  /  4 )  =  ( ( ( 2  x.  M )  +  1 )  /  4
) )
2 2cnd 8179 . . . . . . 7  |-  ( M  e.  ZZ  ->  2  e.  CC )
3 zcn 8437 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
42, 3mulcld 7201 . . . . . 6  |-  ( M  e.  ZZ  ->  (
2  x.  M )  e.  CC )
5 1cnd 7197 . . . . . 6  |-  ( M  e.  ZZ  ->  1  e.  CC )
6 4cn 8184 . . . . . . 7  |-  4  e.  CC
76a1i 9 . . . . . 6  |-  ( M  e.  ZZ  ->  4  e.  CC )
8 4ap0 8205 . . . . . . 7  |-  4 #  0
98a1i 9 . . . . . 6  |-  ( M  e.  ZZ  ->  4 #  0 )
104, 5, 7, 9divdirapd 7982 . . . . 5  |-  ( M  e.  ZZ  ->  (
( ( 2  x.  M )  +  1 )  /  4 )  =  ( ( ( 2  x.  M )  /  4 )  +  ( 1  /  4
) ) )
11 2t2e4 8253 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
1211eqcomi 2086 . . . . . . . . 9  |-  4  =  ( 2  x.  2 )
1312a1i 9 . . . . . . . 8  |-  ( M  e.  ZZ  ->  4  =  ( 2  x.  2 ) )
1413oveq2d 5559 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( 2  x.  M
)  /  4 )  =  ( ( 2  x.  M )  / 
( 2  x.  2 ) ) )
15 2ap0 8199 . . . . . . . . 9  |-  2 #  0
1615a1i 9 . . . . . . . 8  |-  ( M  e.  ZZ  ->  2 #  0 )
173, 2, 2, 16, 16divcanap5d 7970 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( 2  x.  M
)  /  ( 2  x.  2 ) )  =  ( M  / 
2 ) )
1814, 17eqtrd 2114 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( 2  x.  M
)  /  4 )  =  ( M  / 
2 ) )
1918oveq1d 5558 . . . . 5  |-  ( M  e.  ZZ  ->  (
( ( 2  x.  M )  /  4
)  +  ( 1  /  4 ) )  =  ( ( M  /  2 )  +  ( 1  /  4
) ) )
2010, 19eqtrd 2114 . . . 4  |-  ( M  e.  ZZ  ->  (
( ( 2  x.  M )  +  1 )  /  4 )  =  ( ( M  /  2 )  +  ( 1  /  4
) ) )
211, 20sylan9eqr 2136 . . 3  |-  ( ( M  e.  ZZ  /\  N  =  ( (
2  x.  M )  +  1 ) )  ->  ( N  / 
4 )  =  ( ( M  /  2
)  +  ( 1  /  4 ) ) )
2221fveq2d 5213 . 2  |-  ( ( M  e.  ZZ  /\  N  =  ( (
2  x.  M )  +  1 ) )  ->  ( |_ `  ( N  /  4
) )  =  ( |_ `  ( ( M  /  2 )  +  ( 1  / 
4 ) ) ) )
23 iftrue 3364 . . . . . . . 8  |-  ( 2 
||  M  ->  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) )  =  ( M  /  2 ) )
2423adantr 270 . . . . . . 7  |-  ( ( 2  ||  M  /\  M  e.  ZZ )  ->  if ( 2  ||  M ,  ( M  /  2 ) ,  ( ( M  - 
1 )  /  2
) )  =  ( M  /  2 ) )
25 1re 7180 . . . . . . . . . 10  |-  1  e.  RR
26 0le1 7652 . . . . . . . . . 10  |-  0  <_  1
27 4re 8183 . . . . . . . . . 10  |-  4  e.  RR
28 4pos 8203 . . . . . . . . . 10  |-  0  <  4
29 divge0 8018 . . . . . . . . . 10  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( 4  e.  RR  /\  0  <  4 ) )  -> 
0  <_  ( 1  /  4 ) )
3025, 26, 27, 28, 29mp4an 418 . . . . . . . . 9  |-  0  <_  ( 1  /  4
)
31 1lt4 8273 . . . . . . . . . 10  |-  1  <  4
32 recgt1 8042 . . . . . . . . . . 11  |-  ( ( 4  e.  RR  /\  0  <  4 )  -> 
( 1  <  4  <->  ( 1  /  4 )  <  1 ) )
3327, 28, 32mp2an 417 . . . . . . . . . 10  |-  ( 1  <  4  <->  ( 1  /  4 )  <  1 )
3431, 33mpbi 143 . . . . . . . . 9  |-  ( 1  /  4 )  <  1
3530, 34pm3.2i 266 . . . . . . . 8  |-  ( 0  <_  ( 1  / 
4 )  /\  (
1  /  4 )  <  1 )
36 evend2 10433 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
2  ||  M  <->  ( M  /  2 )  e.  ZZ ) )
3736biimpac 292 . . . . . . . . 9  |-  ( ( 2  ||  M  /\  M  e.  ZZ )  ->  ( M  /  2
)  e.  ZZ )
38 4nn 8262 . . . . . . . . . 10  |-  4  e.  NN
39 nnrecq 8811 . . . . . . . . . 10  |-  ( 4  e.  NN  ->  (
1  /  4 )  e.  QQ )
4038, 39ax-mp 7 . . . . . . . . 9  |-  ( 1  /  4 )  e.  QQ
41 flqbi2 9373 . . . . . . . . 9  |-  ( ( ( M  /  2
)  e.  ZZ  /\  ( 1  /  4
)  e.  QQ )  ->  ( ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) )  =  ( M  /  2
)  <->  ( 0  <_ 
( 1  /  4
)  /\  ( 1  /  4 )  <  1 ) ) )
4237, 40, 41sylancl 404 . . . . . . . 8  |-  ( ( 2  ||  M  /\  M  e.  ZZ )  ->  ( ( |_ `  ( ( M  / 
2 )  +  ( 1  /  4 ) ) )  =  ( M  /  2 )  <-> 
( 0  <_  (
1  /  4 )  /\  ( 1  / 
4 )  <  1
) ) )
4335, 42mpbiri 166 . . . . . . 7  |-  ( ( 2  ||  M  /\  M  e.  ZZ )  ->  ( |_ `  (
( M  /  2
)  +  ( 1  /  4 ) ) )  =  ( M  /  2 ) )
4424, 43eqtr4d 2117 . . . . . 6  |-  ( ( 2  ||  M  /\  M  e.  ZZ )  ->  if ( 2  ||  M ,  ( M  /  2 ) ,  ( ( M  - 
1 )  /  2
) )  =  ( |_ `  ( ( M  /  2 )  +  ( 1  / 
4 ) ) ) )
4544expcom 114 . . . . 5  |-  ( M  e.  ZZ  ->  (
2  ||  M  ->  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) )  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) ) )
46 iffalse 3367 . . . . . . . 8  |-  ( -.  2  ||  M  ->  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) )  =  ( ( M  -  1 )  /  2 ) )
4746adantr 270 . . . . . . 7  |-  ( ( -.  2  ||  M  /\  M  e.  ZZ )  ->  if ( 2 
||  M ,  ( M  /  2 ) ,  ( ( M  -  1 )  / 
2 ) )  =  ( ( M  - 
1 )  /  2
) )
48 odd2np1 10417 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( -.  2  ||  M  <->  E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  M ) )
49 ax-1cn 7131 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  e.  CC
50 2cn 8177 . . . . . . . . . . . . . . . . . . . . . . 23  |-  2  e.  CC
5150, 15pm3.2i 266 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  e.  CC  /\  2 #  0 )
52 divcanap5 7869 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  CC  /\  ( 2  e.  CC  /\  2 #  0 )  /\  ( 2  e.  CC  /\  2 #  0 ) )  ->  ( ( 2  x.  1 )  / 
( 2  x.  2 ) )  =  ( 1  /  2 ) )
5349, 51, 51, 52mp3an 1269 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  x.  1 )  /  ( 2  x.  2 ) )  =  ( 1  /  2
)
54 2t1e2 8252 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  x.  1 )  =  2
5554, 11oveq12i 5555 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  x.  1 )  /  ( 2  x.  2 ) )  =  ( 2  /  4
)
5653, 55eqtr3i 2104 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  /  2 )  =  ( 2  /  4
)
5756oveq1i 5553 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  /  2 )  +  ( 1  / 
4 ) )  =  ( ( 2  / 
4 )  +  ( 1  /  4 ) )
5850, 49, 6, 8divdirapi 7924 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  +  1 )  /  4 )  =  ( ( 2  / 
4 )  +  ( 1  /  4 ) )
59 2p1e3 8232 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  +  1 )  =  3
6059oveq1i 5553 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  +  1 )  /  4 )  =  ( 3  /  4
)
6157, 58, 603eqtr2i 2108 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  /  2 )  +  ( 1  / 
4 ) )  =  ( 3  /  4
)
6261a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
( 1  /  2
)  +  ( 1  /  4 ) )  =  ( 3  / 
4 ) )
6362oveq2d 5559 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
x  +  ( ( 1  /  2 )  +  ( 1  / 
4 ) ) )  =  ( x  +  ( 3  /  4
) ) )
6463fveq2d 5213 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  ( |_ `  ( x  +  ( ( 1  / 
2 )  +  ( 1  /  4 ) ) ) )  =  ( |_ `  (
x  +  ( 3  /  4 ) ) ) )
65 3re 8180 . . . . . . . . . . . . . . . . . 18  |-  3  e.  RR
66 0re 7181 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR
67 3pos 8200 . . . . . . . . . . . . . . . . . . 19  |-  0  <  3
6866, 65, 67ltleii 7280 . . . . . . . . . . . . . . . . . 18  |-  0  <_  3
69 divge0 8018 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 3  e.  RR  /\  0  <_  3 )  /\  ( 4  e.  RR  /\  0  <  4 ) )  -> 
0  <_  ( 3  /  4 ) )
7065, 68, 27, 28, 69mp4an 418 . . . . . . . . . . . . . . . . 17  |-  0  <_  ( 3  /  4
)
71 3lt4 8271 . . . . . . . . . . . . . . . . . 18  |-  3  <  4
72 nnrp 8824 . . . . . . . . . . . . . . . . . . . 20  |-  ( 4  e.  NN  ->  4  e.  RR+ )
7338, 72ax-mp 7 . . . . . . . . . . . . . . . . . . 19  |-  4  e.  RR+
74 divlt1lt 8882 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 3  e.  RR  /\  4  e.  RR+ )  -> 
( ( 3  / 
4 )  <  1  <->  3  <  4 ) )
7565, 73, 74mp2an 417 . . . . . . . . . . . . . . . . . 18  |-  ( ( 3  /  4 )  <  1  <->  3  <  4 )
7671, 75mpbir 144 . . . . . . . . . . . . . . . . 17  |-  ( 3  /  4 )  <  1
7770, 76pm3.2i 266 . . . . . . . . . . . . . . . 16  |-  ( 0  <_  ( 3  / 
4 )  /\  (
3  /  4 )  <  1 )
78 3z 8461 . . . . . . . . . . . . . . . . . 18  |-  3  e.  ZZ
79 znq 8790 . . . . . . . . . . . . . . . . . 18  |-  ( ( 3  e.  ZZ  /\  4  e.  NN )  ->  ( 3  /  4
)  e.  QQ )
8078, 38, 79mp2an 417 . . . . . . . . . . . . . . . . 17  |-  ( 3  /  4 )  e.  QQ
81 flqbi2 9373 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ZZ  /\  ( 3  /  4
)  e.  QQ )  ->  ( ( |_
`  ( x  +  ( 3  /  4
) ) )  =  x  <->  ( 0  <_ 
( 3  /  4
)  /\  ( 3  /  4 )  <  1 ) ) )
8280, 81mpan2 416 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
( |_ `  (
x  +  ( 3  /  4 ) ) )  =  x  <->  ( 0  <_  ( 3  / 
4 )  /\  (
3  /  4 )  <  1 ) ) )
8377, 82mpbiri 166 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  ( |_ `  ( x  +  ( 3  /  4
) ) )  =  x )
8464, 83eqtrd 2114 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  ->  ( |_ `  ( x  +  ( ( 1  / 
2 )  +  ( 1  /  4 ) ) ) )  =  x )
8584adantr 270 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( |_ `  ( x  +  (
( 1  /  2
)  +  ( 1  /  4 ) ) ) )  =  x )
86 oveq1 5550 . . . . . . . . . . . . . . . . . 18  |-  ( M  =  ( ( 2  x.  x )  +  1 )  ->  ( M  /  2 )  =  ( ( ( 2  x.  x )  +  1 )  /  2
) )
8786eqcoms 2085 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2  x.  x
)  +  1 )  =  M  ->  ( M  /  2 )  =  ( ( ( 2  x.  x )  +  1 )  /  2
) )
88 2z 8460 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  e.  ZZ
8988a1i 9 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ZZ  ->  2  e.  ZZ )
90 id 19 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ZZ  ->  x  e.  ZZ )
9189, 90zmulcld 8556 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
2  x.  x )  e.  ZZ )
9291zcnd 8551 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
2  x.  x )  e.  CC )
93 1cnd 7197 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  1  e.  CC )
94 2cnd 8179 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  2  e.  CC )
9515a1i 9 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  2 #  0 )
9692, 93, 94, 95divdirapd 7982 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  1 )  /  2 )  =  ( ( ( 2  x.  x )  /  2 )  +  ( 1  /  2
) ) )
97 zcn 8437 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  x  e.  CC )
9897, 94, 95divcanap3d 7949 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
( 2  x.  x
)  /  2 )  =  x )
9998oveq1d 5558 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  /  2
)  +  ( 1  /  2 ) )  =  ( x  +  ( 1  /  2
) ) )
10096, 99eqtrd 2114 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  1 )  /  2 )  =  ( x  +  ( 1  /  2
) ) )
10187, 100sylan9eqr 2136 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( M  / 
2 )  =  ( x  +  ( 1  /  2 ) ) )
102101oveq1d 5558 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( M  /  2 )  +  ( 1  /  4
) )  =  ( ( x  +  ( 1  /  2 ) )  +  ( 1  /  4 ) ) )
103 halfcn 8312 . . . . . . . . . . . . . . . . . 18  |-  ( 1  /  2 )  e.  CC
104103a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
1  /  2 )  e.  CC )
1056, 8recclapi 7897 . . . . . . . . . . . . . . . . . 18  |-  ( 1  /  4 )  e.  CC
106105a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
1  /  4 )  e.  CC )
10797, 104, 106addassd 7203 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
( x  +  ( 1  /  2 ) )  +  ( 1  /  4 ) )  =  ( x  +  ( ( 1  / 
2 )  +  ( 1  /  4 ) ) ) )
108107adantr 270 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( x  +  ( 1  / 
2 ) )  +  ( 1  /  4
) )  =  ( x  +  ( ( 1  /  2 )  +  ( 1  / 
4 ) ) ) )
109102, 108eqtrd 2114 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( M  /  2 )  +  ( 1  /  4
) )  =  ( x  +  ( ( 1  /  2 )  +  ( 1  / 
4 ) ) ) )
110109fveq2d 5213 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( |_ `  ( ( M  / 
2 )  +  ( 1  /  4 ) ) )  =  ( |_ `  ( x  +  ( ( 1  /  2 )  +  ( 1  /  4
) ) ) ) )
111 oveq1 5550 . . . . . . . . . . . . . . . . 17  |-  ( M  =  ( ( 2  x.  x )  +  1 )  ->  ( M  -  1 )  =  ( ( ( 2  x.  x )  +  1 )  - 
1 ) )
112111eqcoms 2085 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2  x.  x
)  +  1 )  =  M  ->  ( M  -  1 )  =  ( ( ( 2  x.  x )  +  1 )  - 
1 ) )
113 pncan1 7548 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  x.  x )  e.  CC  ->  (
( ( 2  x.  x )  +  1 )  -  1 )  =  ( 2  x.  x ) )
11492, 113syl 14 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  1 )  -  1 )  =  ( 2  x.  x ) )
115112, 114sylan9eqr 2136 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( M  - 
1 )  =  ( 2  x.  x ) )
116115oveq1d 5558 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( M  -  1 )  / 
2 )  =  ( ( 2  x.  x
)  /  2 ) )
11798adantr 270 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( 2  x.  x )  / 
2 )  =  x )
118116, 117eqtrd 2114 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( M  -  1 )  / 
2 )  =  x )
11985, 110, 1183eqtr4rd 2125 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( M  -  1 )  / 
2 )  =  ( |_ `  ( ( M  /  2 )  +  ( 1  / 
4 ) ) ) )
120119ex 113 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  1 )  =  M  -> 
( ( M  - 
1 )  /  2
)  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) ) )
121120adantl 271 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  M  ->  ( ( M  -  1 )  / 
2 )  =  ( |_ `  ( ( M  /  2 )  +  ( 1  / 
4 ) ) ) ) )
122121rexlimdva 2478 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  M  -> 
( ( M  - 
1 )  /  2
)  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) ) )
12348, 122sylbid 148 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( -.  2  ||  M  -> 
( ( M  - 
1 )  /  2
)  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) ) )
124123impcom 123 . . . . . . 7  |-  ( ( -.  2  ||  M  /\  M  e.  ZZ )  ->  ( ( M  -  1 )  / 
2 )  =  ( |_ `  ( ( M  /  2 )  +  ( 1  / 
4 ) ) ) )
12547, 124eqtrd 2114 . . . . . 6  |-  ( ( -.  2  ||  M  /\  M  e.  ZZ )  ->  if ( 2 
||  M ,  ( M  /  2 ) ,  ( ( M  -  1 )  / 
2 ) )  =  ( |_ `  (
( M  /  2
)  +  ( 1  /  4 ) ) ) )
126125expcom 114 . . . . 5  |-  ( M  e.  ZZ  ->  ( -.  2  ||  M  ->  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) )  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) ) )
127 zeo3 10412 . . . . 5  |-  ( M  e.  ZZ  ->  (
2  ||  M  \/  -.  2  ||  M ) )
12845, 126, 127mpjaod 671 . . . 4  |-  ( M  e.  ZZ  ->  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) )  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) )
129128eqcomd 2087 . . 3  |-  ( M  e.  ZZ  ->  ( |_ `  ( ( M  /  2 )  +  ( 1  /  4
) ) )  =  if ( 2  ||  M ,  ( M  /  2 ) ,  ( ( M  - 
1 )  /  2
) ) )
130129adantr 270 . 2  |-  ( ( M  e.  ZZ  /\  N  =  ( (
2  x.  M )  +  1 ) )  ->  ( |_ `  ( ( M  / 
2 )  +  ( 1  /  4 ) ) )  =  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) ) )
13122, 130eqtrd 2114 1  |-  ( ( M  e.  ZZ  /\  N  =  ( (
2  x.  M )  +  1 ) )  ->  ( |_ `  ( N  /  4
) )  =  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   E.wrex 2350   ifcif 3359   class class class wbr 3793   ` cfv 4932  (class class class)co 5543   CCcc 7041   RRcr 7042   0cc0 7043   1c1 7044    + caddc 7046    x. cmul 7048    < clt 7215    <_ cle 7216    - cmin 7346   # cap 7748    / cdiv 7827   NNcn 8106   2c2 8156   3c3 8157   4c4 8158   ZZcz 8432   QQcq 8785   RR+crp 8815   |_cfl 9350    || cdvds 10340
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156  ax-arch 7157
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-xor 1308  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-if 3360  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-po 4059  df-iso 4060  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828  df-inn 8107  df-2 8165  df-3 8166  df-4 8167  df-n0 8356  df-z 8433  df-q 8786  df-rp 8816  df-fl 9352  df-dvds 10341
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator