ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqcld Unicode version

Theorem flqcld 9348
Description: The floor (greatest integer) function is an integer (closure law). (Contributed by Jim Kingdon, 8-Oct-2021.)
Hypothesis
Ref Expression
flqcld.1  |-  ( ph  ->  A  e.  QQ )
Assertion
Ref Expression
flqcld  |-  ( ph  ->  ( |_ `  A
)  e.  ZZ )

Proof of Theorem flqcld
StepHypRef Expression
1 flqcld.1 . 2  |-  ( ph  ->  A  e.  QQ )
2 flqcl 9344 . 2  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  ZZ )
31, 2syl 14 1  |-  ( ph  ->  ( |_ `  A
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1434   ` cfv 4926   ZZcz 8421   QQcq 8774   |_cfl 9339
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-cnex 7118  ax-resscn 7119  ax-1cn 7120  ax-1re 7121  ax-icn 7122  ax-addcl 7123  ax-addrcl 7124  ax-mulcl 7125  ax-mulrcl 7126  ax-addcom 7127  ax-mulcom 7128  ax-addass 7129  ax-mulass 7130  ax-distr 7131  ax-i2m1 7132  ax-0lt1 7133  ax-1rid 7134  ax-0id 7135  ax-rnegex 7136  ax-precex 7137  ax-cnre 7138  ax-pre-ltirr 7139  ax-pre-ltwlin 7140  ax-pre-lttrn 7141  ax-pre-apti 7142  ax-pre-ltadd 7143  ax-pre-mulgt0 7144  ax-pre-mulext 7145  ax-arch 7146
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-int 3639  df-iun 3682  df-br 3788  df-opab 3842  df-mpt 3843  df-id 4050  df-po 4053  df-iso 4054  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-fv 4934  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-pnf 7206  df-mnf 7207  df-xr 7208  df-ltxr 7209  df-le 7210  df-sub 7337  df-neg 7338  df-reap 7731  df-ap 7738  df-div 7817  df-inn 8096  df-n0 8345  df-z 8422  df-q 8775  df-rp 8805  df-fl 9341
This theorem is referenced by:  flqge  9353  flqlt  9354  flid  9355  flqltnz  9358  flqwordi  9359  flqword2  9360  flqaddz  9368  flhalf  9373  flltdivnn0lt  9375  fldiv4p1lem1div2  9376  ceiqcl  9378  ceiqge  9380  ceiqm1l  9382  intfracq  9391  flqdiv  9392  modqval  9395  modqvalr  9396  modqcl  9397  flqpmodeq  9398  modq0  9400  modqge0  9403  modqlt  9404  modqdiffl  9406  modqdifz  9407  modqmulnn  9413  modqvalp1  9414  zmodcl  9415  modqcyc  9430  modqadd1  9432  modqmuladd  9437  modqmul1  9448  modqdi  9463  modqsubdir  9464  iexpcyc  9665  facavg  9759  dvdsmod  10396  divalglemnn  10451  divalgmod  10460  flodddiv4t2lthalf  10470  modgcd  10515
  Copyright terms: Public domain W3C validator