Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptcos Unicode version

Theorem fmptcos 5364
 Description: Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fmptcof.1
fmptcof.2
fmptcof.3
Assertion
Ref Expression
fmptcos
Distinct variable groups:   ,,   ,   ,   ,
Allowed substitution hints:   (,)   ()   ()   ()   (,)   (,)

Proof of Theorem fmptcos
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 fmptcof.1 . 2
2 fmptcof.2 . 2
3 fmptcof.3 . . 3
4 nfcv 2220 . . . 4
5 nfcsb1v 2939 . . . 4
6 csbeq1a 2917 . . . 4
74, 5, 6cbvmpt 3880 . . 3
83, 7syl6eq 2130 . 2
9 csbeq1 2912 . 2
101, 2, 8, 9fmptcof 5363 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1285   wcel 1434  wral 2349  csb 2909   cmpt 3847   ccom 4375 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-fv 4940 This theorem is referenced by:  fmpt2co  5868
 Copyright terms: Public domain W3C validator