ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fncnv Unicode version

Theorem fncnv 5159
Description: Single-rootedness (see funcnv 5154) of a class cut down by a cross product. (Contributed by NM, 5-Mar-2007.)
Assertion
Ref Expression
fncnv  |-  ( `' ( R  i^i  ( A  X.  B ) )  Fn  B  <->  A. y  e.  B  E! x  e.  A  x R
y )
Distinct variable groups:    x, y, A   
x, B, y    x, R, y

Proof of Theorem fncnv
StepHypRef Expression
1 df-fn 5096 . 2  |-  ( `' ( R  i^i  ( A  X.  B ) )  Fn  B  <->  ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  dom  `' ( R  i^i  ( A  X.  B ) )  =  B ) )
2 df-rn 4520 . . . 4  |-  ran  ( R  i^i  ( A  X.  B ) )  =  dom  `' ( R  i^i  ( A  X.  B ) )
32eqeq1i 2125 . . 3  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  <->  dom  `' ( R  i^i  ( A  X.  B ) )  =  B )
43anbi2i 452 . 2  |-  ( ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  ran  ( R  i^i  ( A  X.  B ) )  =  B )  <->  ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  dom  `' ( R  i^i  ( A  X.  B ) )  =  B ) )
5 rninxp 4952 . . . . 5  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  <->  A. y  e.  B  E. x  e.  A  x R
y )
65anbi1i 453 . . . 4  |-  ( ( ran  ( R  i^i  ( A  X.  B
) )  =  B  /\  A. y  e.  B  E* x  e.  A  x R y )  <->  ( A. y  e.  B  E. x  e.  A  x R
y  /\  A. y  e.  B  E* x  e.  A  x R
y ) )
7 funcnv 5154 . . . . . 6  |-  ( Fun  `' ( R  i^i  ( A  X.  B
) )  <->  A. y  e.  ran  ( R  i^i  ( A  X.  B
) ) E* x  x ( R  i^i  ( A  X.  B
) ) y )
8 raleq 2603 . . . . . . 7  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  ->  ( A. y  e.  ran  ( R  i^i  ( A  X.  B ) ) E* x  x ( R  i^i  ( A  X.  B ) ) y  <->  A. y  e.  B  E* x  x ( R  i^i  ( A  X.  B ) ) y ) )
9 biimt 240 . . . . . . . . 9  |-  ( y  e.  B  ->  ( E* x  e.  A  x R y  <->  ( y  e.  B  ->  E* x  e.  A  x R
y ) ) )
10 moanimv 2052 . . . . . . . . . 10  |-  ( E* x ( y  e.  B  /\  ( x  e.  A  /\  x R y ) )  <-> 
( y  e.  B  ->  E* x ( x  e.  A  /\  x R y ) ) )
11 brinxp2 4576 . . . . . . . . . . . 12  |-  ( x ( R  i^i  ( A  X.  B ) ) y  <->  ( x  e.  A  /\  y  e.  B  /\  x R y ) )
12 3anan12 959 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  y  e.  B  /\  x R y )  <->  ( y  e.  B  /\  (
x  e.  A  /\  x R y ) ) )
1311, 12bitri 183 . . . . . . . . . . 11  |-  ( x ( R  i^i  ( A  X.  B ) ) y  <->  ( y  e.  B  /\  ( x  e.  A  /\  x R y ) ) )
1413mobii 2014 . . . . . . . . . 10  |-  ( E* x  x ( R  i^i  ( A  X.  B ) ) y  <->  E* x ( y  e.  B  /\  ( x  e.  A  /\  x R y ) ) )
15 df-rmo 2401 . . . . . . . . . . 11  |-  ( E* x  e.  A  x R y  <->  E* x
( x  e.  A  /\  x R y ) )
1615imbi2i 225 . . . . . . . . . 10  |-  ( ( y  e.  B  ->  E* x  e.  A  x R y )  <->  ( y  e.  B  ->  E* x
( x  e.  A  /\  x R y ) ) )
1710, 14, 163bitr4i 211 . . . . . . . . 9  |-  ( E* x  x ( R  i^i  ( A  X.  B ) ) y  <-> 
( y  e.  B  ->  E* x  e.  A  x R y ) )
189, 17syl6rbbr 198 . . . . . . . 8  |-  ( y  e.  B  ->  ( E* x  x ( R  i^i  ( A  X.  B ) ) y  <->  E* x  e.  A  x R y ) )
1918ralbiia 2426 . . . . . . 7  |-  ( A. y  e.  B  E* x  x ( R  i^i  ( A  X.  B
) ) y  <->  A. y  e.  B  E* x  e.  A  x R
y )
208, 19syl6bb 195 . . . . . 6  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  ->  ( A. y  e.  ran  ( R  i^i  ( A  X.  B ) ) E* x  x ( R  i^i  ( A  X.  B ) ) y  <->  A. y  e.  B  E* x  e.  A  x R y ) )
217, 20syl5bb 191 . . . . 5  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  ->  ( Fun  `' ( R  i^i  ( A  X.  B
) )  <->  A. y  e.  B  E* x  e.  A  x R
y ) )
2221pm5.32i 449 . . . 4  |-  ( ( ran  ( R  i^i  ( A  X.  B
) )  =  B  /\  Fun  `' ( R  i^i  ( A  X.  B ) ) )  <->  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  /\  A. y  e.  B  E* x  e.  A  x R
y ) )
23 r19.26 2535 . . . 4  |-  ( A. y  e.  B  ( E. x  e.  A  x R y  /\  E* x  e.  A  x R y )  <->  ( A. y  e.  B  E. x  e.  A  x R y  /\  A. y  e.  B  E* x  e.  A  x R y ) )
246, 22, 233bitr4i 211 . . 3  |-  ( ( ran  ( R  i^i  ( A  X.  B
) )  =  B  /\  Fun  `' ( R  i^i  ( A  X.  B ) ) )  <->  A. y  e.  B  ( E. x  e.  A  x R y  /\  E* x  e.  A  x R y ) )
25 ancom 264 . . 3  |-  ( ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  ran  ( R  i^i  ( A  X.  B ) )  =  B )  <->  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  /\  Fun  `' ( R  i^i  ( A  X.  B ) ) ) )
26 reu5 2620 . . . 4  |-  ( E! x  e.  A  x R y  <->  ( E. x  e.  A  x R y  /\  E* x  e.  A  x R y ) )
2726ralbii 2418 . . 3  |-  ( A. y  e.  B  E! x  e.  A  x R y  <->  A. y  e.  B  ( E. x  e.  A  x R y  /\  E* x  e.  A  x R y ) )
2824, 25, 273bitr4i 211 . 2  |-  ( ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  ran  ( R  i^i  ( A  X.  B ) )  =  B )  <->  A. y  e.  B  E! x  e.  A  x R
y )
291, 4, 283bitr2i 207 1  |-  ( `' ( R  i^i  ( A  X.  B ) )  Fn  B  <->  A. y  e.  B  E! x  e.  A  x R
y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 947    = wceq 1316    e. wcel 1465   E*wmo 1978   A.wral 2393   E.wrex 2394   E!wreu 2395   E*wrmo 2396    i^i cin 3040   class class class wbr 3899    X. cxp 4507   `'ccnv 4508   dom cdm 4509   ran crn 4510   Fun wfun 5087    Fn wfn 5088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-v 2662  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-fun 5095  df-fn 5096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator