![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fneq2 | Unicode version |
Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fneq2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2092 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | anbi2d 452 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | df-fn 4955 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | df-fn 4955 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | 3bitr4g 221 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-4 1441 ax-17 1460 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-cleq 2076 df-fn 4955 |
This theorem is referenced by: fneq2d 5041 fneq2i 5045 feq2 5082 foeq2 5154 f1o00 5212 eqfnfv2 5318 tfr0dm 5991 tfrlemisucaccv 5994 tfrlemi1 6001 tfrlemi14d 6002 tfrexlem 6003 tfr1onlemsucfn 6009 tfr1onlemsucaccv 6010 tfr1onlembxssdm 6012 tfr1onlembfn 6013 tfr1onlemaccex 6017 tfr1onlemres 6018 0fz1 9192 |
Copyright terms: Public domain | W3C validator |